dc.contributor.author | Olsen, Jógvan Magnus Haugaard | |
dc.contributor.author | Bolnykh, Viacheslav | |
dc.contributor.author | Meloni, Simone | |
dc.contributor.author | Ippoliti, Emiliano | |
dc.contributor.author | Bircher, Martin Peter | |
dc.contributor.author | Carloni, Paolo | |
dc.contributor.author | Rothlisberger, Ursula | |
dc.date.accessioned | 2019-08-02T13:20:37Z | |
dc.date.available | 2019-08-02T13:20:37Z | |
dc.date.issued | 2019-04-18 | |
dc.description.abstract | We present a flexible and efficient framework for multiscale modeling in computational chemistry (MiMiC). It is based on a multiple-program multiple-data (MPMD) model with loosely coupled programs. Fast data exchange between programs is achieved through the use of MPI intercommunicators. This allows exploiting the existing parallelization strategies used by the coupled programs while maintaining a high degree of flexibility. MiMiC has been used in a new electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) implementation coupling the highly efficient CPMD and GROMACS programs but it can also be extended to use other programs. The framework can also be utilized to extend the partitioning of the system into several domains that can be treated using different models, such as models based on wavefunction or density functional theory as well as coarse-graining and continuum models. The new QM/MM implementation treats long-range electrostatic QM-MM interactions through the multipoles of the QM subsystem which substantially reduces the computational cost without loss of accuracy compared to an exact treatment. This enables QM/MM molecular dynamics (MD) simulations of very large systems. | en_US |
dc.description.sponsorship | Danish Council for Independent Research (DFF)
Carlsberg Foundation
Deutsche Forschungsgemeinschaft
Swiss National Science Foundation | en_US |
dc.description | Source at <a href=https://doi.org/10.1021/acs.jctc.9b00093>https://doi.org/10.1021/acs.jctc.9b00093</a>. | en_US |
dc.identifier.citation | Olsen, J.M.H., Bolnykh, V., Meloni, S., Ippoliti, E., Bircher, M.P., Carloni, P. & Rothlisberger, U. (2019). MiMiC: A Novel Framework for Multiscale Modeling in Computational Chemistry. <i>Journal of Chemical Theory and Computation, 15</i>(6), 3810-3823. https://doi.org/10.1021/acs.jctc.9b00093 | en_US |
dc.identifier.cristinID | FRIDAID 1693312 | |
dc.identifier.doi | 10.1021/acs.jctc.9b00093 | |
dc.identifier.issn | 1549-9618 | |
dc.identifier.issn | 1549-9626 | |
dc.identifier.uri | https://hdl.handle.net/10037/15833 | |
dc.language.iso | eng | en_US |
dc.publisher | American Chemical Society | en_US |
dc.relation.journal | Journal of Chemical Theory and Computation | |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/SFF/262695/Norway/Hylleraas Centre for Quantum Molecular Sciences// | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/642069/EU/High Performance Computing in Life Sciences, Engineering And Physics/HPC-LEAP/ | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/675728/EU/Centre of Excellence for Biomolecular Research/BioExcel/ | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Matematikk og naturvitenskap: 400::Kjemi: 440::Teoretisk kjemi, kvantekjemi: 444 | en_US |
dc.subject | VDP::Mathematics and natural scienses: 400::Chemistry: 440::Theoretical chemistry, quantum chemistry: 444 | en_US |
dc.subject | Molekylær dynamikk / Molecular dynamics | en_US |
dc.subject | Multiskalasimulering / Multiscale modelling | en_US |
dc.title | MiMiC: A Novel Framework for Multiscale Modeling in Computational Chemistry | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |