ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

All-electron fully relativistic Kohn-Sham theory for solids based on the Dirac-Coulomb Hamiltonian and Gaussian-type functions

Permanent lenke
https://hdl.handle.net/10037/15861
Thumbnail
Åpne
article.pdf (656.9Kb)
Publisher's version (PDF)
Dato
2019-05-03
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Kadek, Marius; Repisky, Michal; Ruud, Kenneth
Sammendrag
We present the first full-potential method that solves the fully relativistic four-component Dirac-Kohn-Sham equation for materials in the solid state within the framework of atom-centered Gaussian-type orbitals (GTOs). Our GTO-based method treats one-, two-, and three-dimensional periodic systems on an equal footing, and allows for a seamless transition to the methodology commonly used in studies of molecules with heavy elements. The scalar relativistic effects as well as the spin-orbit interaction are handled variationally. The full description of the electron-nuclear potential in the core region of heavy nuclei is straightforward due to the local nature of the GTOs and does not pose any computational difficulties. We show how the time-reversal symmetry and a quaternion algebra-based formalism can be exploited to significantly reduce the increased methodological complexity and computational cost associated with multiple wave-function components coupled by the spin-orbit interaction. We provide a detailed description of how to employ the matrix form of the multipole expansion and an iterative renormalization procedure to evaluate the conditionally convergent infinite lattice sums arising in studies of periodic systems. Next, we investigate the problem of inverse variational collapse that arises if the Dirac operator containing a repulsive periodic potential is expressed in a basis that includes diffuse functions, and suggest a possible solution. Finally, we demonstrate the validity of the method on three-dimensional silver halide (AgX) crystals with large relativistic effects and two-dimensional honeycomb structures (silicene and germanene) exhibiting the spin-orbit-driven quantum spin Hall effect. Our results are well-converged with respect to the basis set limit using standard bases developed for molecular calculations and indicate that the common rule of removing basis functions with small exponents should not be applied when transferring the molecular basis to solids.
Beskrivelse
Source at https://doi.org/10.1103/PhysRevB.99.205103.
Forlag
American Physical Society
Sitering
Kadek, M., Repisky, M. & Ruud, K. (2019). All-electron fully relativistic Kohn-Sham theory for solids based on the Dirac-Coulomb Hamiltonian and Gaussian-type functions. Physical Review B, 99, 205103. https://doi.org/10.1103/PhysRevB.99.205103
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (kjemi) [565]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring