Vis enkel innførsel

dc.contributor.advisorBremdal, Bernt Arild
dc.contributor.authorHeidari, Fatemeh
dc.date.accessioned2019-08-20T09:46:49Z
dc.date.available2019-08-20T09:46:49Z
dc.date.issued2018-08-16
dc.description.abstractThis thesis presents a general model to estimate the number of people at office spaces in the given time step. This project represents the description of the several approaches for similar problems, general description of statistical and machine learning models and applying those models for specific building. This work is also cover some suggested dashboards to keep track of space usage. The flowing models are applied to indoor air parameters: multi linear regression, support vector regression, and neural networks such as multi-layer perceptron and long-short term memory. The best performance was achieved by LSTM with 4 hidden layer and 16 number of neurons.en_US
dc.identifier.urihttps://hdl.handle.net/10037/15975
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2018 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subject.courseIDSHO6264
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550en_US
dc.subjectVDP::Technology: 500::Information and communication technology: 550en_US
dc.subjectOccupancy predictionen_US
dc.subjectMachin learningen_US
dc.subjectprinciple component analysisen_US
dc.subjectcorrelation coefficienten_US
dc.subjectArtificial intelligenceen_US
dc.subjectLSTM, SVR, MLPen_US
dc.titleStudy of area use and floor space occupation in office buildings using ML approachen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)