dc.contributor.author | Bolnykh, Viacheslav | |
dc.contributor.author | Olsen, Jógvan Magnus Haugaard | |
dc.contributor.author | Meloni, Simone | |
dc.contributor.author | Bircher, Martin Peter | |
dc.contributor.author | Ippoliti, Emiliano | |
dc.contributor.author | Carloni, Paolo | |
dc.contributor.author | Rothlisberger, Ursula | |
dc.date.accessioned | 2019-09-13T10:50:14Z | |
dc.date.available | 2019-09-13T10:50:14Z | |
dc.date.issued | 2019-09-09 | |
dc.description.abstract | We present a highly scalable DFT-based QM/MM implementation developed within MiMiC, a recently introduced multiscale modeling framework that uses a loose-coupling strategy in conjunction with a multiple-program multiple-data (MPMD) approach. The computation of electrostatic QM/MM interactions is parallelized exploiting both distributed- and shared-memory strategies. Here, we use the efficient CPMD and GROMACS programs as QM and MM engines, respectively. The scalability is demonstrated through large-scale benchmark simulations of realistic biomolecular systems employing GGA and hybrid exchange-correlation functionals. We show that the loose-coupling strategy adopted in MiMiC, with its inherent high flexibility, does not carry any significant computational overhead compared to a tight-coupling scheme. Furthermore, we demonstrate that the adopted parallelization strategy enables scaling of up to 13,000 CPU cores with efficiency above 70%, thus making DFT-based QM/MM MD simulations using hybrid functionals at the nanosecond scale accessible. | en_US |
dc.description.sponsorship | Danish Council for Independent Research (DFF)
Carlsberg Foundation
Deutsche Forschungsgemeinschaft
Swiss National Science Foundation | en_US |
dc.description | Accepted manuscript version. Published version in <i>Journal of Chemical Theory and Computation</i> available at <a href=https://doi.org/10.1021/acs.jctc.9b00424>https://doi.org/10.1021/acs.jctc.9b00424. </a> | en_US |
dc.identifier.citation | Bolnykh, V., Olsen, J.M.H., Meloni, S., Bircher, M.P., Ippoliti, E., Carloni, P. & Rothlisberger, U. (2019). Extreme Scalability of DFT-based QM/MM MD Simulations Using MiMiC. <i>Journal of Chemical Theory and Computation</i>. https://doi.org/10.1021/acs.jctc.9b00424 | en_US |
dc.identifier.cristinID | FRIDAID 1724023 | |
dc.identifier.issn | 1549-9618 | |
dc.identifier.issn | 1549-9626 | |
dc.identifier.uri | https://hdl.handle.net/10037/16193 | |
dc.language.iso | eng | en_US |
dc.publisher | American Chemical Society | en_US |
dc.relation.journal | Journal of Chemical Theory and Computation | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/675728/EU/Centre of Excellence for Biomolecular Research/BioExcel/ | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/642069/EU/High Performance Computing in Life Sciences, Engineering And Physics/HPC-LEAP/ | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/SFF/262695/Norway/Hylleraas Centre for Quantum Molecular Sciences// | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Chemistry: 440 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Kjemi: 440 | en_US |
dc.title | Extreme Scalability of DFT-based QM/MM MD Simulations Using MiMiC | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |