ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

On derivatives of smooth functions represented in multiwavelet bases

Permanent lenke
https://hdl.handle.net/10037/17033
DOI
https://doi.org/10.1016/j.jcpx.2019.100033
Thumbnail
Åpne
article.pdf (1.202Mb)
Publisert versjon (PDF)
Dato
2019-07-24
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Anderson, Joel; Harrison, Robert J.; Sekino, Hideo; Sundahl, Bryan; Beylkin, Gregory; Fann, George I.; Jensen, Stig Rune; Sagert, Irina
Sammendrag
We construct high-order derivative operators for smooth functions represented via discontinuous multiwavelet bases. The need for such operators arises in order to avoid artifacts when computing functionals involving high-order derivatives of solutions of integral equations. Previously high-order derivatives had to be formed by repeated application of a first-derivative operator that, while uniquely defined, has a spectral norm that grows quadratically with polynomial order and, hence, greatly amplifies numerical noise (truncation error) in the multiwavelet computation. The new constructions proceed via least-squares projection onto smooth bases and provide substantially improved numerical properties as well as permitting direct construction of high-order derivatives. We employ either b-splines or bandlimited exponentials as the intermediate smooth basis, with the former maintaining the concept of approximation order while the latter preserves the pure imaginary spectrum of the first-derivative operator and provides more direct control over the bandlimit and accuracy of computation. We demonstrate the properties of these new operators via several numerical tests as well as application to a problem in nuclear physics.
Forlag
Elsevier
Sitering
Anderson, Harrison, Sekino, Sundahl, Beylkin, Fann, Jensen SR, Sagert. On derivatives of smooth functions represented in multiwavelet bases. Journal of Computational Physics: X. 2019;4:100033
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (kjemi) [565]
Copyright 2019 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring