ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cost-Effective Potential for Accurate Polarizable Embedding Calculations in Protein Environments

Permanent lenke
https://hdl.handle.net/10037/17929
DOI
https://doi.org/10.1021/acs.jctc.9b00616
Thumbnail
Åpne
article.pdf (3.903Mb)
Akseptert manusversjon (PDF)
Dato
2019-12-19
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Reinholdt, Peter; Kjellgren, Erik Rosendahl; Steinmann, Casper; Olsen, Jógvan Magnus Haugaard
Sammendrag
The fragment-based polarizable embedding (PE) model combined with an appropriate electronic structure method constitutes a highly efficient and accurate multiscale approach for computing spectroscopic properties of a central moiety including effects from its molecular environment through an embedding potential. There is, however, a comparatively high computational overhead associated with the computation of the embedding potential, which is derived from first-principles calculations on individual fragments of the environment. To reduce the computational cost associated with the calculation of embedding potential parameters, we developed a set of amino acid-specific transferable parameters tailored for large-scale PE-based calculations that include proteins. The amino acid-based parameters are obtained by simultaneously fitting to a set of reference electric potentials based on structures derived from a backbone-dependent rotamer library. The developed cost-effective polarizable protein potential (CP3) consists of atom-centered charges and isotropic dipole–dipole polarizabilities of the standard amino acids. In terms of reproduction of electric potentials, the CP3 is shown to perform consistently and with acceptable accuracy across both small tripeptide test systems and larger proteins. We show, through applications on realistic protein systems, that acceptable accuracy can be obtained by using a pure CP3 representation of the protein environment, thus altogether omitting the cost associated with the calculation of embedding potential parameters. High accuracy comparable to that of the full fragment-based approach can be achieved through a mixed description where the CP3 is used only to describe amino acids beyond a threshold distance from the central quantum part.
Beskrivelse
This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.jctc.9b00616
Forlag
American Chemical Society
Sitering
Reinholdt P, Kjellgren ER, Steinmann C, Olsen JMH. Cost-Effective Potential for Accurate Polarizable Embedding Calculations in Protein Environments. Journal of Chemical Theory and Computation. 2020
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (kjemi) [565]
Copyright © 2019 American Chemical Society

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring