dc.contributor.author | Ferapontov, Evgeny V | |
dc.contributor.author | Kruglikov, Boris | |
dc.date.accessioned | 2020-03-31T11:28:11Z | |
dc.date.available | 2020-03-31T11:28:11Z | |
dc.date.issued | 2019-10-08 | |
dc.description.abstract | Paraconformal or GL(2, ℝ) geometry on an <i>n</i>-dimensional manifold <i>M</i> is defined by a field of rational normal curves of degree <i>n</i> – 1 in the projectivised cotangent bundle <i>ℙT*M</i>. Such geometry is known to arise on solution spaces of ODEs with vanishing Wünschmann (Doubrov–Wilczynski) invariants. In this paper we discuss yet another natural source of <i>GL</i>(2, ℝ) structures, namely dispersionless integrable hierarchies of PDEs such as the dispersionless Kadomtsev–Petviashvili (dKP) hierarchy. In the latter context, <i>GL</i>(2, ℝ) structures coincide with the characteristic variety (principal symbol) of the hierarchy.<p>
<p>Dispersionless hierarchies provide explicit examples of particularly interesting classes of involutive <i>GL</i>(2, ℝ) structures studied in the literature. Thus, we obtain torsion-free <i>GL</i>(2, ℝ) structures of Bryant [5] that appeared in the context of exotic holonomy in dimension four, as well as totally geodesic <i>GL</i>(2, ℝ) structures of Krynski [33]. The latter possess a compatible affine connection (with torsion) and a two-parameter family of totally geodesic <i>α</i>-manifolds (coming from the dispersionless Lax equations), which makes them a natural generalisation of the Einstein–Weyl geometry.
<p>Our main result states that involutive <i>GL</i>(2, ℝ) structures are governed by a dispersionless integrable system whose general local solution depends on 2<i>n</i> – 4 arbitrary functions of 3 variables. This establishes integrability of the system of Wünschmann conditions. | en_US |
dc.identifier.citation | Ferapontov EV, Kruglikov BS. Dispersionless integrable hierarchies and GL(2,R) geometry. Mathematical proceedings of the Cambridge Philosophical Society (Print). 2019 | en_US |
dc.identifier.cristinID | FRIDAID 1745277 | |
dc.identifier.doi | 10.1017/S0305004119000355 | |
dc.identifier.issn | 0305-0041 | |
dc.identifier.issn | 1469-8064 | |
dc.identifier.uri | https://hdl.handle.net/10037/17940 | |
dc.language.iso | eng | en_US |
dc.publisher | Cambridge University Press (CUP) | en_US |
dc.relation.journal | Mathematical proceedings of the Cambridge Philosophical Society (Print) | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | © Cambridge Philosophical Society 2019 | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.title | Dispersionless integrable hierarchies and GL(2,R) geometry | en_US |
dc.type.version | acceptedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |