Vis enkel innførsel

dc.contributor.authorDoubrov, Boris
dc.contributor.authorFerapontov, Evgeny V
dc.contributor.authorKruglikov, Boris
dc.contributor.authorNovikov, Vladimir S
dc.date.accessioned2020-03-31T11:50:05Z
dc.date.available2020-03-31T11:50:05Z
dc.date.issued2018-01-29
dc.description.abstractLet Gr(d, n) be the Grassmannian of <i>d</i>-dimensional linear subspaces of an <i>n</i>-dimensional vector space <i>V</i>. A submanifold <i>X</i> ⊂ Gr(<i>d, n</i>) gives rise to a differential system Σ(X) that governs <i>d</i>-dimensional submanifolds of <i>V</i> whose Gaussian image is contained in <i>X</i>. We investigate a special case of this construction where <i>X</i> is a six-fold in Gr(4, 6). The corresponding system Σ(<i>X</i>) reduces to a pair of first-order PDEs for 2 functions of 4 independent variables. Equations of this type arise in self-dual Ricci-flat geometry. Our main result is a complete description of <i>integrable</i> systems Σ(<i>X</i>). These naturally fall into two subclasses.<p> <ul id = «mylist»><li>Systems of Monge–Ampère type. The corresponding six-folds <i>X</i> are codimension 2 linear sections of the Plücker embedding Gr(4, 6)<span>&#8618;</span>P<sup>14</sup>⁠.</li> <li>General linearly degenerate systems. The corresponding six-folds <i>X</i> are the images of quadratic maps P<sup>6</sup>⇢ Gr(4, 6) given by a version of the classical construction of Chasles.</li></ul><p> We prove that integrability is equivalent to the requirement that the characteristic variety of system Σ(<i>X</i>) gives rise to a conformal structure which is self-dual on every solution. In fact, all solutions carry hyper-Hermitian geometry.en_US
dc.descriptionThis article has been accepted for publication in International Mathematics Research Notices Published by Oxford University Press.en_US
dc.identifier.citationDoubrov B, Ferapontov EV, Kruglikov BS, Novikov VS. Integrable Systems in Four Dimensions Associated with Six-Folds in Gr(4, 6). International mathematics research notices. 2019;2019(21):6585-6613en_US
dc.identifier.cristinIDFRIDAID 1782263
dc.identifier.doi10.1093/imrn/rnx308
dc.identifier.issn1073-7928
dc.identifier.issn1687-0247
dc.identifier.urihttps://hdl.handle.net/10037/17941
dc.language.isoengen_US
dc.publisherOxford University Pressen_US
dc.relation.journalInternational mathematics research notices
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2018 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleIntegrable Systems in Four Dimensions Associated with Six-Folds in Gr(4, 6)en_US
dc.type.versionsubmittedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel