Vis enkel innførsel

dc.contributor.authorBianchi, Filippo Maria
dc.contributor.authorScardapane, Simone
dc.contributor.authorLøkse, Sigurd
dc.contributor.authorJenssen, Robert
dc.date.accessioned2020-09-09T09:15:52Z
dc.date.available2020-09-09T09:15:52Z
dc.date.issued2020-06-29
dc.description.abstractClassification of multivariate time series (MTS) has been tackled with a large variety of methodologies and applied to a wide range of scenarios. Reservoir computing (RC) provides efficient tools to generate a vectorial, fixed-size representation of the MTS that can be further processed by standard classifiers. Despite their unrivaled training speed, MTS classifiers based on a standard RC architecture fail to achieve the same accuracy of fully trainable neural networks. In this article, we introduce the reservoir model space, an unsupervised approach based on RC to learn vectorial representations of MTS. Each MTS is encoded within the parameters of a linear model trained to predict a low-dimensional embedding of the reservoir dynamics. Compared with other RC methods, our model space yields better representations and attains comparable computational performance due to an intermediate dimensionality reduction procedure. As a second contribution, we propose a modular RC framework for MTS classification, with an associated open-source Python library. The framework provides different modules to seamlessly implement advanced RC architectures. The architectures are compared with other MTS classifiers, including deep learning models and time series kernels. Results obtained on the benchmark and real-world MTS data sets show that RC classifiers are dramatically faster and, when implemented using our proposed representation, also achieve superior classification accuracyen_US
dc.identifier.citationBianchi, .F.M; Scardapane, S.; Løkse, S.; Jenssen, R. (2020) Reservoir computing approaches for representation and classification of multivariate time series. In <i>IEEE Transactions on Neural Networks and Learning Systems </i>, https://doi.org/10.1109/TNNLS.2020.3001377en_US
dc.identifier.cristinIDFRIDAID 1828145
dc.identifier.doi10.1109/TNNLS.2020.3001377
dc.identifier.issn2162-237X
dc.identifier.issn2162-2388
dc.identifier.urihttps://hdl.handle.net/10037/19273
dc.language.isoengen_US
dc.relation.journalIEEE Transactions on Neural Networks and Learning Systems
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 IEEEen_US
dc.subjectVDP::Mathematics and natural science: 400::Information and communication science: 420::Mathematical modeling and numerical methods: 427en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Matematisk modellering og numeriske metoder: 427en_US
dc.titleReservoir computing approaches for representation and classification of multivariate time seriesen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel