dc.contributor.author | Goldberg, Vladislav V. | |
dc.contributor.author | Lychagin, Valentin V. | |
dc.date.accessioned | 2009-08-25T09:08:25Z | |
dc.date.available | 2009-08-25T09:08:25Z | |
dc.date.issued | 2008-10-30 | |
dc.description.abstract | We find necessary and sufficient conditions for the foliation defined by
level sets of a function f(x1, ..., xn) to be totally geodesic in a torsion-free
connection and apply them to find the conditions for d-webs of hypersurfaces
to be geodesic, and in the case of flat connections, for d-webs
(d ≥ n + 1) of hypersurfaces to be hyperplanar webs. These conditions
are systems of generalized Euler equations, and for flat connections we
give an explicit construction of their solutions. | en |
dc.description | Dette er forfatternes aksepterte versjon | en |
dc.format.extent | 116407 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications DOI 10.1007/s10440-009-9437-1 | en |
dc.identifier.uri | https://hdl.handle.net/10037/2046 | |
dc.identifier.urn | URN:NBN:no-uit_munin_1798 | |
dc.language.iso | eng | en |
dc.publisher | Springer Netherlands | en |
dc.rights.accessRights | openAccess | |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412 | en |
dc.subject | Geodesic web | en |
dc.subject | Linear web | en |
dc.subject | Euler equation | en |
dc.subject | Projective structure | en |
dc.subject | Affine symmetric space | en |
dc.title | Geodesic Webs and PDE Systems of Euler
Equations | en |
dc.type | Journal article | en |
dc.type | Tidsskriftartikkel | en |
dc.type | Peer reviewed | en |