Show simple item record

dc.contributor.authorKruglikov, Boris
dc.date.accessioned2009-09-22T08:25:29Z
dc.date.available2009-09-22T08:25:29Z
dc.date.issued2007-09-04
dc.description.abstractA criterion in terms of differential invariants for a metric on a surface to be Liouville is established. Moreover, in this paper we completely solve in invariant terms the local mobility problem of a 2D metric, considered by Darboux: How many quadratic in momenta integrals does the geodesic flow of a given metric possess? The method is also applied to recognition of other polynomial integrals of geodesic flows.en
dc.descriptionDette er forfatternes aksepterte versjon. This is the author’s final accepted manuscript.en
dc.format.extent338129 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of Geometry and Physics 58 (2008) 979–995 doi:10.1016/j.geomphys.2008.03.005en
dc.identifier.urihttps://hdl.handle.net/10037/2121
dc.identifier.urnURN:NBN:no-uit_munin_1872
dc.language.isoengen
dc.publisherElsevieren
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Topology/geometry: 415en
dc.subjectgeodesic flowen
dc.subjectKilling fieldlityen
dc.subjectLiouville metricen
dc.subjectpolynomial integralsen
dc.subjectdegree of mobien
dc.subjectdifferential invarianten
dc.subjectcompatibilityen
dc.subjectmulti-bracketen
dc.subjectsolvabilityen
dc.titleInvariant characterization of Liouville metrics and polynomial integralsen
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record