Vis enkel innførsel

dc.contributor.advisorHansen, Espen Holst
dc.contributor.authorOsvik, Renate Døving
dc.date.accessioned2021-05-30T19:51:11Z
dc.date.available2021-05-30T19:51:11Z
dc.date.issued2021-06-23
dc.description.abstractThe diatoms make up the largest and most important group of marine microalgae. They are responsible for a quarter of all inorganic carbon fixation in the ocean and are thus of immense importance for global CO2 sequestration. This makes them good candidates for biological carbon capture and utilization (CCU) by mass cultivation using CO2 emissions from industrial point sources. Large scale cultivation of marine diatoms will produce valuable biomass containing marine lipids and proteins with possible commercial application. Commercial production of biomass requires extensive knowledge on the species to be cultivated in terms of optimal cultivation conditions, but also on the bioactivity, cytotoxicity and how the species responds to changing cultivation conditions. Most studies on the bioactivity and biochemistry of marine diatoms have been performed on species cultivated in the laboratory. Cultivation conditions are known to affect the biochemistry of diatoms, and large-scale cultivation will inevitably lead to a change in the environmental conditions. The present study was therefore designed to investigate how <i>Porosira glacialis</i> cultivated in large scale responds to changes in abiotic and biotic cultivation conditions. The first study was designed to investigate whether the direct addition of factory smoke as a source of CO2 would trigger production of bioactive or cytotoxic compounds in <i>P. glacialis</i>. Bioactivity testing revealed activity in anticancer, antibacterial and antibiofilm assays, in addition to cytotoxicity against human lung fibroblasts and effect on the development of sea urchin larvae. Nonetheless, the addition of factory smoke did not increase the cytotoxicity of <i>P. glacialis</i>, nor did it change the beneficial antibacterial and antibiofilm activity. These results are favourable for further development of large-scale production of diatom biomass. <i>P. glacialis</i> was co-cultivated with zooplankton to investigate whether the bioactivity and metabolic expression of the diatom would change when exposed to grazing pressure. The bioactivity testing revealed that the presence of zooplankton increased the cytotoxicity of <i>P. glacialis</i> towards human normal lung fibroblasts. Investigation of active compounds and metabolomic analysis showed that the grazing pressure possibly influence the carotenoid concentration in <i>P. glacialis</i>. It was also found that the bioactivity might be traced to primary metabolites such as chlorophyll derived compounds. The study also showed that the use of OSMAC (one strain many compounds) could be a useful method for further investigation of the bioactivity of diatoms. Investigation of the antibiofilm activity of <i>P. glacialis</i> resulted in isolation of two compounds showing inhibition of biofilm formation by Staphylococcus epidermidis. The compounds isolated were methyl 3-hydroxyoctadecanoate and a pheophorbide-like compound. This is the first time compounds with antibiofilm activity have been isolated from <i>P. glacialis</i> as well as the first evidence of such activity from both the isolated compounds.en_US
dc.description.abstractKiselalgene utgjør den største og viktigste gruppen av marine mikroalger. De er ansvarlige for en fjerdedel av all uorganisk karbonfiksering i havet og er dermed av enorm betydning for det globale CO2 opptaket. Dette gjør dem til gode kandidater for biologisk karbonfangst og -utnyttelse (CCU) i massedyrking ved bruk av CO2 fra industrielle punktutslipp. Storskala dyrking av marine kiselalger vil produsere verdifull biomasse som inneholder marine lipider og proteiner med mulig kommersiell anvendelse. Kommersiell produksjon av biomasse krever stor kunnskap om arten som skal dyrkes med tanke på best mulige dyrkingsforhold, men også om bioaktivitet, toksisitet og hvordan arten reagerer på endrede dyrkingsforhold. De fleste studier på bioaktivitet og biokjemi av marine kiselalger er utført på arter dyrket i laboratoriet. Det er kjent at dyrkingsforhold påvirker biokjemien til kiselalger, og dyrking i stor skala vil uunngåelig føre til en endring i miljøforholdene. Denne studien ble derfor designet for å undersøke hvordan <i>Porosira glacialis</i> dyrket i stor skala reagerer på endringer i abiotiske og biotiske dyrkingsforhold. Den første studien undersøkte om direkte tilsetning av fabrikkrøyk som kilde til CO2 ville endre produksjon av bioaktive eller toksiske forbindelser i <i>P. glacialis</i>. Bioaktivitetstesting avdekket aktivitet i alle tester: anticancer, antibakteriell og anti-biofilm. I tillegg viste resultatene toksisitet som hemmet utvikling av kråkebolle-larver og humane lungefibroblaster. Likevel økte ikke tilsetting av fabrikkrøyk toksisiteten til <i>P. glacialis</i>, og den hemmet heller ikke den gunstige antibakterielle og anti-biofilm-aktiviteten til algene. Disse resultatene er svært positive for videre utvikling av storskala produksjon av kiselalger. <i>P. glacialis</i> ble dyrket sammen med dyreplankton for å undersøke om bioaktiviteten og utrykket av metabolitter ville endre seg når de ble utsatt for stress i form av beitetrykk. Testing av bioaktivitet avslørte at tilstedeværelsen av zooplankton økte toksisiteten til <i>P. glacialis</i> mot humane normale lungefibroblaster. Undersøkelse av aktive forbindelser og metabolittprofiler viste at beitetrykket muligens påvirker konsentrasjonen av karotenoider i <i>P. glacialis</i>, og at bioaktiviteten muligens kan spores til primære metabolitter som klorofyllderivater. Studien viste også at bruk av OSMAC (one strain many compounds) kunne være en nyttig metode for videre undersøkelse av bioaktiviteten til kiselalger. Undersøkelse av anti-biofilm-aktiviteten til <i>P. glacialis</i> resulterte i isolasjon av to forbindelser som viser inhibering av biofilmdannelse av bakterien Staphylococcus epidermidis. De isolerte forbindelsene var metyl-3-hydroksyoktadekanoat og en pheophorbid-lignende struktur. Dette er første gang en forbindelse med anti-biofilm-aktivitet er blitt isolert fra <i>P. glacialis</i>, og det første beviset på slik aktivitet fra begge de isolerte forbindelsene.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractThe diatoms make up the largest group of marine microalgae. They are responsible for 25% of all inorganic carbon fixation in the ocean, making them good candidates for carbon capture and utilization (CCU) by mass cultivation using CO2 from industrial point sources. Cultivation of diatoms will produce valuable biomass containing lipids and proteins with commercial application. The biomass could also harbour interesting bioactivity such as anticancer, antibacterial or antibiofilm compounds. Expression of bioactive compounds can change with changing cultivation conditions. Thus, the aim was to investigate how the bioactivity of marine diatom Porosira glacialis changes with changing environment using bioactivity testing and metabolomics. This has given new insight into the biochemistry of how diatoms respond to large-scale cultivation and environmental changes. We were also able to isolate two compounds with antibiofilm activity with a possible commercial application.en_US
dc.description.sponsorshipThe position has been funded by UiT – The Arctic University of Norway and the research conducted at Observatoire Oceanologique in Banyuls-sur-Mer, France was supported by a grant from the Aurora mobility program by the Research Council of Norway.en_US
dc.identifier.isbn978-82-8266-201-7
dc.identifier.urihttps://hdl.handle.net/10037/21273
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.relation.haspart<p>Paper I: Osvik, R.O., Andersen, J.H., Eilertsen, H.C., Geneviere, A.M. & Hansen, E.H. (2021). Bioactivity of a marine diatom (<i>Porosira glacialis</i> [Grunow] Jørgensen 1905) cultivated with and without factory smoke CO2. <i>Industrial Biotechnology, 17</i>(1), 38-48. Also available at <a href=https://doi.org/10.1089/ind.2020.0031> https://doi.org/10.1089/ind.2020.0031</a>. <p>Paper II: Osvik, R.O., Ingebrigtsen, R.A., Norrbin, F., Andersen, J.H., Eilertsen, H.C., Hansen, E.H. (2021). Adding zooplankton to the OSMAC toolkit: Effect of grazing stress on the metabolic profile and bioactivity of a diatom. <i>Marine Drugs, 19</i>(2), 87. Also available in Munin at <a href= https://hdl.handle.net/10037/21272> https://hdl.handle.net/10037/21272</a>. <p>Paper III: Osvik, R.O., Ingebrigtsen, R.A., Hansen, K.Ø., Isaksson, J., Andersen, J.H., Eilertsen, H.C. & Hansen, E.H. Compounds from <i>Porosira glacialis</i> with activity against biofilm formed by <i>Staphylococcus epidermidis</i>. (Manuscript).en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)
dc.subject.courseIDDOKTOR-002
dc.subjectVDP::Mathematics and natural science: 400::Basic biosciences: 470::General microbiology: 472en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Generell mikrobiologi: 472en_US
dc.subjectVDP::Technology: 500::Biotechnology: 590en_US
dc.subjectVDP::Teknologi: 500::Bioteknologi: 590en_US
dc.subjectVDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497en_US
dc.subjectVDP::Agriculture and fishery disciplines: 900::Fisheries science: 920::Aquaculture: 922en_US
dc.subjectVDP::Landbruks- og Fiskerifag: 900::Fiskerifag: 920::Akvakultur: 922en_US
dc.titleBioprospecting of marine phytoplankton from large scale cultivation - Effect of culture conditions on bioactivity and biochemistry of the diatom Porosira glacialisen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel