ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Challenges and opportunities beyond structured data in analysis of electronic health records

Permanent lenke
https://hdl.handle.net/10037/21435
DOI
https://doi.org/10.1002/wics.1549
Thumbnail
Åpne
article.pdf (2.064Mb)
Publisert versjon (PDF)
Dato
2021-02-14
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Tayefi, Maryam; Ngo, Phuong; Chomutare, Taridzo; Dalianis, Hercules; Salvi, Elisa; Budrionis, Andrius; Godtliebsen, Fred
Sammendrag
Electronic health records (EHR) contain a lot of valuable information about individual patients and the whole population. Besides structured data, unstructured data in EHRs can provide extra, valuable information but the analytics processes are complex, time-consuming, and often require excessive manual effort. Among unstructured data, clinical text and images are the two most popular and important sources of information. Advanced statistical algorithms in natural language processing, machine learning, deep learning, and radiomics have increasingly been used for analyzing clinical text and images. Although there exist many challenges that have not been fully addressed, which can hinder the use of unstructured data, there are clear opportunities for well-designed diagnosis and decision support tools that efficiently incorporate both structured and unstructured data for extracting useful information and provide better outcomes. However, access to clinical data is still very restricted due to data sensitivity and ethical issues. Data quality is also an important challenge in which methods for improving data completeness, conformity and plausibility are needed. Further, generalizing and explaining the result of machine learning models are important problems for healthcare, and these are open challenges. A possible solution to improve data quality and accessibility of unstructured data is developing machine learning methods that can generate clinically relevant synthetic data, and accelerating further research on privacy preserving techniques such as deidentification and pseudonymization of clinical text.
Forlag
Wiley
Sitering
Tayefi, Ngo P, Chomutare, Dalianis, Salvi, Budrionis, Godtliebsen. Challenges and opportunities beyond structured data in analysis of electronic health records. Wiley Interdisciplinary Reviews: Computational Statistics. 2021:1-19
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [357]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring