Show simple item record

dc.contributor.authorMoustrou, Philippe
dc.contributor.authorRiener, Cordian
dc.contributor.authorVerdure, Hugues
dc.date.accessioned2021-08-16T10:32:22Z
dc.date.available2021-08-16T10:32:22Z
dc.date.issued2021-02-18
dc.description.abstractAn ideal of polynomials is symmetric if it is closed under permutations of variables. We relate general symmetric ideals to the so called Specht ideals generated by all Specht polynomials of a given shape. We show a connection between the leading monomials of polynomials in the ideal and the Specht polynomials contained in the ideal. This provides applications in several contexts. Most notably, this connection gives information about the solutions of the corresponding set of equations. From another perspective, it restricts the isotypic decomposition of the ideal viewed as a representation of the symmetric group.en_US
dc.identifier.citationMoustrou, Riener, Verdure. Symmetric ideals, Specht polynomials and solutions to symmetric systems of equations. Journal of symbolic computation. 2021;107:106-121en_US
dc.identifier.cristinIDFRIDAID 1902032
dc.identifier.doi10.1016/j.jsc.2021.02.002
dc.identifier.issn0747-7171
dc.identifier.urihttps://hdl.handle.net/10037/22072
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of symbolic computation
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/POEMA/813211/Norway/Polynomial Optimization, Efficiency through Moments and Algebra//en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400en_US
dc.titleSymmetric ideals, Specht polynomials and solutions to symmetric systems of equationsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record