Show simple item record

dc.contributor.authorShaimardan, S.
dc.contributor.authorPersson, Lars Erik
dc.contributor.authorTokmagambetov, N.S.
dc.date.accessioned2021-10-25T12:18:09Z
dc.date.available2021-10-25T12:18:09Z
dc.date.issued2020
dc.description.abstractIn this paper we derive a sufficient condition for the existence of a unique solution of a Cauchy type q-fractional problem (involving the fractional q-derivative of Riemann-Liouville type) for some nonlinear differential equations. The key technique is to first prove that this Cauchy type q-fractional problem is equivalent to a corresponding Volterra q-integral equation. Moreover, we define the q-analogue of the Hilfer fractional derivative or composite fractional derivative operator and prove some similar new equivalence, existence and uniqueness results as above. Finally, some examples are presented to illustrate our main results in cases where we can even give concrete formulas for these unique solutions.en_US
dc.identifier.citationShaimardan S, Persson LE, Tokmagambetov. Existence and Uniqueness of Some Cauchy Type Problems in Fractional q-Difference Calculus . Filomat. 2020en_US
dc.identifier.cristinIDFRIDAID 1910405
dc.identifier.doi10.2298/FIL2013429S
dc.identifier.issn0354-5180
dc.identifier.urihttps://hdl.handle.net/10037/22811
dc.language.isoengen_US
dc.publisherDepartment of Mathematics and Informatics, Faculty of Science and Mathematics, University of Nišen_US
dc.relation.journalFilomat
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleExistence and Uniqueness of Some Cauchy Type Problems in Fractional q-Difference Calculusen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record