dc.relation.haspart | <p>Paper I: Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., de Lange, T., Johansen, D. & Johansen, H.D. (2019). ResUNet++: An Advance architecture for Medical image Segmentation. <i>Proceedings of IEEE International Symposium on Multimedia (ISM), 2019</i>, 225-230. (Accepted manuscript version). Published version available at <a href=https://doi.org/10.1109/ISM46123.2019.00049>https://doi.org/10.1109/ISM46123.2019.00049</a>.
<p>Paper II: Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., de Lange, T., Johansen, D. & Johansen, H.D. (2020). Kvasir-SEG: A Segmented Polyp Dataset. In: Ro, Y., Cheng, W.H., Kim, J., Chu, W.T., Cui, P., Choi, J.W., Hu, M.C. & De Neve, W. (Eds), <i>MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science, 11962</i>, 451-462. Springer, Cham. Also available at <a href=https://doi.org/10.1007/978-3-030-37734-2_37> https://doi.org/10.1007/978-3-030-37734-2_37</a>.
<p>Paper III: Jha, D., Smedsrud, P.H., Johansen, D., de Lange, T., Johansen, H.D., Halvorsen, P. & Riegler, M.A. (2021). A Comprehensive Study on Colorectal Polyp Segmentation With ResUNet++, Conditional Random Field and Test-Time Augmentation. <i>IEEE Journal of Biomedical and Health Informatics, 25</i>(6), 2029-2040. Also available in Munin at <a href=https://hdl.handle.net/10037/20301>https://hdl.handle.net/10037/20301</a>.
<p>Paper IV: Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P. & Johansen, H.D. (2020). DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation. <i>2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)</i>, 558-564. Published version not available in Munin due to publisher’s restrictions. Published version available at <a href=https://doi.org/10.1109/CBMS49503.2020.00111>https://doi.org/10.1109/CBMS49503.2020.00111</a>.
<p>Paper V: Jha, D., Ali, S., Tomar, N.K., Johansen, H.D., Johansen, D., Rittscher, J. & Halvorsen, P. (2021). Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning. <i>IEEE Access, 9</i>, 40496-40510. Also available in Munin at <a href=https://hdl.handle.net/10037/23242>https://hdl.handle.net/10037/23242</a>.
<p>Paper VI: Jha, D., Tomar, N.K., Ali, S, Riegler, M.A., Johansen, H.D., Johansen, D. & Halvorsen, P. (2021). NanoNet: Real-Time Polyp Segmentation in Endoscopy. <i>Proceedings of IEEE International Symposium on Computer-Based Medical Systems (CBMS), 2021</i>. (Accepted manuscript version). Published version available at <a href=https://doi.org/10.1109/CBMS52027.2021.00014>https://doi.org/10.1109/CBMS52027.2021.00014</a>.
<p>Paper VII: Jha, D., Ali, S., Emanuelsen, K., Hicks, S.A., Garcia-Ceja, E., Riegler, M.A., … Halvorsen, P. (2021). Kvasir-Instrument: Diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy. In: Lokoč, J., Skopal, T., Schoeffmann, K., Mezaris, V., Li, X., Vrochidis, S. & Patras, I. (Eds), <i>MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science, 12573</i>, 218-229. Springer, Cham. Also available at <a href=https://doi.org/10.1007/978-3-030-67835-7_19> https://doi.org/10.1007/978-3-030-67835-7_19</a>.
<p>Paper VIII: Jha, D., Hicks, S.A., Emanuelsen, K., Johansen, H., Johansen, D., de Lange, T., Riegler, M.A. & Halvorsen, P. (2020). Medico Multimedia Task at MediaEval 2020: Automatic Polyp Segmentation. <i>Working Notes Proceedings of the MediaEval 2020 Workshop, Online, 14-15 December 2020</i>. Also available at <a href=http://ceur-ws.org/Vol-2882/paper1.pdf>http://ceur-ws.org/Vol-2882/paper1.pdf</a>.
<p>Paper IX: Jha, D., Yazidi, A., Riegler, M.A., Johansen, D., Johansen, H.D. & Halvorsen, P. (2021). LightLayers: Parameter Efficient Dense and Convolutional Layers for Image Classification. In: Zhang, Y., Xu, Y. & Tian, H. (Eds.), <i>Parallel and Distributed Computing, Applications and Technologies. PDCAT 2020. Lecture Notes in Computer Science, 12606</i>, 285–296. Springer, Cham. Also available at <a href=https://doi.org/10.1007/978-3-030-69244-5_25>https://doi.org/10.1007/978-3-030-69244-5_25</a>.
<p>Paper X: Jha, D., Ali, S., Hicks, S., Thambawita, V., Borgli, H., Smedsrud, P.H., … Halvorsen, P. (2021). A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging. <i>Medical Image Analysis, 70</i>, 102007. Also available in Munin at <a href=https://hdl.handle.net/10037/23476>https://hdl.handle.net/10037/23476</a>.
<p>Paper XI: Jha, D., Ali, S., Tomar, N.K., Riegler, M.A., Johansen, D., Johansen, H.D. & Halvorsen, P. (2021). Exploring Deep Learning Methods for Real-Time Surgical Instrument Segmentation in Laparoscopy. <i>Proceedings of the IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), 2021</i>. Published version not available in Munin due to publisher’s restrictions. Published version available at <a href=https://doi.org/10.1109/BHI50953.2021.9508610>https://doi.org/10.1109/BHI50953.2021.9508610</a>.
<p>Paper XII: Borgli, H., Thambawita, V., Smedsrud, P.H., Hicks, S., Jha, D., Eskeland, S.L., … de Lange, T. (2020). HyperKvasir, a comprehensive multiclass image and video dataset for gastrointestinal endoscopy. <i>Scientific Data, 7</i>, 283. Also available in Munin at <a href=https://hdl.handle.net/10037/20442>https://hdl.handle.net/10037/20442</a>.
<p>Paper XIII: Smedsrud, P.H., Gjestang, H.L., Nedrejord, O.O., Næss, E., Thambawita, V., Hicks, S., … Halvorsen, P. (2021). Kvasir-Capsule, a video capsule endoscopy dataset. <i>Scientific Data, 8</i>, 142. Also available in Munin at <a href=https://hdl.handle.net/10037/21497>https://hdl.handle.net/10037/21497</a>.
<p>Paper XIV: Thambawita, V., Jha, D., Hammer, H.L., Johansen, H.D., Johansen, D., Halvorsen, P. & Riegler, M.A. (2020). An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification. <i>ACM Transactions on Computing for Healthcare, 1</i>(3), 17. Also available at <a href= https://doi.org/10.1145/3386295> https://doi.org/10.1145/3386295</a>.
<p>Paper XV: Tomar, N.K., Jha, D., Ali, S., Johansen, H.D., Johansen, D., Riegler, M.A. & Halvorsen, P. (2021). DDANet: Dual Decoder Attention Network for Automatic Polyp Segmentation. (Accepted manuscript). Now published in Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J. & Vezzani, R. (Eds.), <i>Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science, 12668</i>, 307-314. Springer, Cham. Available at <a href=https://doi.org/10.1007/978-3-030-68793-9_23> https://doi.org/10.1007/978-3-030-68793-9_23</a>.
<p>Paper XVI: Tomar, N., Ibtehaz, N., Jha, D., Halvorsen, P. & Ali, S. (2021). Improving generalizability in polyp segmentation using ensemble convolutional neural network. <i>Proceedings of the 3rd International Workshop and Challenge on Computer Vision in Endoscopy (EndoCV 2021), Nice, France, April 13, 2021</i>. Also available at <a href=http://ceur-ws.org/Vol-2886/paper5.pdf>http://ceur-ws.org/Vol-2886/paper5.pdf</a>.
<p>Paper XVII: Hicks, S.A., Jha, D., Thambawita, V., Halvorsen, P., Hammer, H.L. & Riegler M.A. (2021). The EndoTect 2020 Challenge: Evaluation and Comparison of Classification, Segmentation and Inference Time for Endoscopy. In: Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J. & Vezzani, R. (Eds.), <i>Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science, 12668</i>, 263-274. Springer, Cham. Also available at <a href=https://doi.org/10.1007/978-3-030-68793-9_18>https://doi.org/10.1007/978-3-030-68793-9_18</a>.
<p>Paper XVIII: Thambawita, V., Jha, D., Riegler, M., Halvorsen, P., Hammer, H.L., Johansen, H.D. & Johansen, D. (2018). The medico-task 2018: Disease detection in the gastrointestinal tract using global features and deep learning. <i>Proceedings of MediaEval’18, 29-31 October 2018, Sophia Antipolis, France</i>. Also available at <a href=http://ceur-ws.org/Vol-2283/MediaEval_18_paper_20.pdf>http://ceur-ws.org/Vol-2283/MediaEval_18_paper_20.pdf</a>.
<p>Paper XIX: Strümke, I., Hicks, S.A., Thambawita, V., Jha, D., Parasa, S., Riegler, M.A. & Halvorsen, P. (2021). Artificial Intelligence in Gastroenterology. In: Lidströmer, N. & Ashrafian, H. (Eds.), <i>Artificial Intelligence in Medicine</i>, 1-21. Springer, Cham. (Accepted manuscript). Published version available at <a href=https://doi.org/10.1007/978-3-030-58080-3_163-2>https://doi.org/10.1007/978-3-030-58080-3_163-2</a>.
<p>Paper XX: Roß, T., Reinke, A., Full, P.M., Wagner, M., Kenngott, H., Apitz, M., … Maier-Hein, L. (2021). Comparative validation of multi-instance instrument segmentation in endoscopy: Results of the ROBUST-MIS 2019 challenge. <i>Medical Image Analysis, 70</i>, 101920. Also available at <a href=https://doi.org/10.1016/j.media.2020.101920>https://doi.org/10.1016/j.media.2020.101920</a>.
<p>Paper XXI: Ge-Peng Ji, Yu-Cheng Chou, Deng-Ping Fan, Geng Chen, Huazhu Fu, Debesh Jha, and Ling Shao (2021). Progressively Normalized Self-Attention Network for Video Polyp Segmentation. (Manuscript). Now published in: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y. & Essert, C. (Eds.), <i>Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science, 12901</i>, 142-152. Springer, Cham. Available at <a href=https://doi.org/10.1007/978-3-030-87193-2_14> https://doi.org/10.1007/978-3-030-87193-2_14</a>. | en_US |