dc.contributor.author | The, Dennis | |
dc.date.accessioned | 2022-01-26T11:36:15Z | |
dc.date.available | 2022-01-26T11:36:15Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Among (regular, normal) parabolic geometries of type (G,P), there is a locally unique maximally symmetric structure and it has symmetry dimension dim(G). The symmetry gap problem concerns the determination of the next realizable (submaximal) symmetry dimension. When G is a complex or split-real simple Lie group of rank at least three or when (G,P)=(G2,P2), we establish a local classification result for all submaximally symmetric structures. | en_US |
dc.description | Also available at <a href=https://arxiv.org/abs/2107.10500v1>https://arxiv.org/abs/2107.10500v1</a>. | en_US |
dc.identifier.citation | The. On uniqueness of submaximally symmetric parabolic geometries. arXiv. 2021 | en_US |
dc.identifier.cristinID | FRIDAID 1987034 | |
dc.identifier.uri | https://hdl.handle.net/10037/23816 | |
dc.language.iso | eng | en_US |
dc.relation.journal | arXiv | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2021 The Author(s) | en_US |
dc.title | On uniqueness of submaximally symmetric parabolic geometries | en_US |
dc.type.version | submittedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |