Vis enkel innførsel

dc.contributor.authorThe, Dennis
dc.date.accessioned2022-01-26T11:36:15Z
dc.date.available2022-01-26T11:36:15Z
dc.date.issued2021
dc.description.abstractAmong (regular, normal) parabolic geometries of type (G,P), there is a locally unique maximally symmetric structure and it has symmetry dimension dim(G). The symmetry gap problem concerns the determination of the next realizable (submaximal) symmetry dimension. When G is a complex or split-real simple Lie group of rank at least three or when (G,P)=(G2,P2), we establish a local classification result for all submaximally symmetric structures.en_US
dc.descriptionAlso available at <a href=https://arxiv.org/abs/2107.10500v1>https://arxiv.org/abs/2107.10500v1</a>.en_US
dc.identifier.citationThe. On uniqueness of submaximally symmetric parabolic geometries. arXiv. 2021en_US
dc.identifier.cristinIDFRIDAID 1987034
dc.identifier.urihttps://hdl.handle.net/10037/23816
dc.language.isoengen_US
dc.relation.journalarXiv
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.titleOn uniqueness of submaximally symmetric parabolic geometriesen_US
dc.type.versionsubmittedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel