ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras

Permanent lenke
https://hdl.handle.net/10037/24373
DOI
https://doi.org/10.3842/SIGMA.2021.059
Thumbnail
Åpne
article.pdf (832.5Kb)
Publisert versjon (PDF)
Dato
2021-06-10
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Bossinger, Lara; Mohammadi, Fatemeh; Nájera Chávez, Alfredo
Sammendrag
Let V be the weighted projective variety defined by a weighted homogeneous ideal J and C a maximal cone in the Gröbner fan of J with m rays. We construct a flat family over Am that assembles the Gröbner degenerations of V associated with all faces of C. This is a multi-parameter generalization of the classical one-parameter Gröbner degeneration associated to a weight. We explain how our family can be constructed from Kaveh-Manon's recent work on the classification of toric flat families over toric varieties: it is the pull-back of a toric family defined by a Rees algebra with base XC (the toric variety associated to C) along the universal torsor Am→XC. We apply this construction to the Grassmannians Gr(2,Cn) with their Plücker embeddings and the Grassmannian Gr(3,C6) with its cluster embedding. In each case, there exists a unique maximal Gröbner cone whose associated initial ideal is the Stanley-Reisner ideal of the cluster complex. We show that the corresponding cluster algebra with universal coefficients arises as the algebra defining the flat family associated to this cone. Further, for Gr(2,Cn) we show how Escobar-Harada's mutation of Newton-Okounkov bodies can be recovered as tropicalized cluster mutation.
Forlag
Department of Applied Research, Institute of Math
Sitering
Bossinger, Mohammadi, Nájera Chávez. Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras. SIGMA. Symmetry, Integrability and Geometry. 2021;17:1-46
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [355]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring