Vis enkel innførsel

dc.contributor.authorSamko, Natasha Gabatsuyevna
dc.date.accessioned2022-03-31T06:36:14Z
dc.date.available2022-03-31T06:36:14Z
dc.date.issued2021-11-22
dc.description.abstractWe study commutators of weighted fractional Hardy-type operators within the frameworks of local generalized Morrey spaces over quasi-metric measure spaces for a certain class of “radial” weights. Quasi-metric measure spaces may include, in particular, sets of fractional dimentsions. We prove theorems on the boundedness of commutators with CMO coefficients of these operators. Given a domain Morrey space L<sup>p,ϕ</sup>(X) for the fractional Hardy operators or their commutators, we pay a special attention to the study of the range of the exponent q of the target space L<sup>q,ψ</sup>(X). In particular, in the case of classical Morrey spaces, we provide the upper bound of this range which is greater than the known Adams exponent. MSC 2010: Primary 46E30; Secondary 42B35, 42B25, 47B38 Key Words and Phrases: Morrey space; weighted fractional Hardy operators; commutators; BMO; CMO; quasi-metric measure spaces; growth condition; homogeneous spaces; quasi-monotone weightsen_US
dc.identifier.citationSamko. Weighted fractional Hardy operators and their commutators on generalized Morrey spaces over quasi-metric measure spaces. Fractional Calculus and Applied Analysis. 2021;24(6):1643-1669en_US
dc.identifier.cristinIDFRIDAID 1999719
dc.identifier.doi10.1515/fca-2021-0071
dc.identifier.issn1311-0454
dc.identifier.issn1314-2224
dc.identifier.urihttps://hdl.handle.net/10037/24661
dc.language.isoengen_US
dc.publisherde Gruyteren_US
dc.relation.journalFractional Calculus and Applied Analysis
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 Diogenes Co., Sofiaen_US
dc.titleWeighted fractional Hardy operators and their commutators on generalized Morrey spaces over quasi-metric measure spacesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel