Vis enkel innførsel

dc.contributor.advisorEltoft, Torbjørn
dc.contributor.authorAnfinsen, Stian Normann
dc.date.accessioned2010-05-21T08:51:03Z
dc.date.available2010-05-21T08:51:03Z
dc.date.issued2010-05-19
dc.description.abstractThis thesis presents methods for statistical analysis of the probability distributions used to model multilook polarimetric radar images. The methods are based on a matrix-variate version of Mellin's integral transform. The proposed theoretical framework is referred to as Mellin kind statistics. It is an extension of a theory recently developed for single polarisation amplitude and intensity data to the complex matrix-variate case describing multilook polarimetric images. This generalisation is made possible by the rediscovery of a generalised Mellin transform, which is defined for functions of positive definite Hermitian matrices. The domain makes it suited for application to the distributions used to model the polarimetric covariance and coherency matrix. The analysis tools include the matrix-variate Mellin kind characteristic function, which is defined with the Mellin transform in place of the conventional Fourier transform. Matrix log-moments and matrix log-cumulants are retrieved from this function. The matrix log-cumulants are used in a moment based approach to parameter estimation of the distribution parameters. The estimators make efficient use of all the statistical information in the polarimetric covariance matrix, and are superior to all known alternatives. The matrix log-cumulants are also used to construct the first known goodness-of-fit test for matrix distributions based on the multilook polarimetric product model. The algorithms are interpreted by means of a highly informative graphical visualisation tool displaying a space spanned by certain matrix log-cumulants. It is demonstrated that the matrix-variate Mellin transform is the natural tool for analysing multilook polarimetric radar images. This conclusion is based on the simple and elegant mathematical expressions obtained, the superb statistical properties of developed estimators, as well as the intuitive interpretations offered by the Mellin kind statistics.en
dc.description.doctoraltypeph.d.en
dc.description.sponsorshipUniversity of Tromsøen
dc.format.extent9069372 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-82-8236-017-3
dc.identifier.urihttps://hdl.handle.net/10037/2471
dc.identifier.urnURN:NBN:no-uit_munin_2218
dc.language.isoengen
dc.publisherUniversitetet i Tromsøen
dc.publisherUniversity of Tromsøen
dc.rights.accessRightsopenAccess
dc.rights.holderCopyright 2010 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subjectremote sensingen
dc.subjectearth observationen
dc.subjectsynthetic aperture radaren
dc.subjectpolarimetric radaren
dc.subjectradar statisticsen
dc.subjectmatrix-variate statisticsen
dc.subjectMellin transformen
dc.subjectparameter estimationen
dc.subjectdoubly stochastic product modelen
dc.subjectgoodness-of-fiten
dc.subjectstatistical modelingen
dc.subjectlog-cumulantsen
dc.subjectlog-statisticsen
dc.subjectsecond kind statisticsen
dc.subjectMellin kind statisticsen
dc.subjectprobability density functionsen
dc.subjectradar polarimetryen
dc.subjectVDP::Matematikk og naturvitenskap: 400::Matematikk: 410::Statistikk: 412en
dc.subjectVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Elektromagnetisme, akustikk, optikk: 434en
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430::Electromagnetism, acoustics, optics: 434en
dc.titleStatistical Analysis of Multilook Polarimetric Radar Images with the Mellin Transformen
dc.typeDoctoral thesisen
dc.typeDoktorgradsavhandlingen


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)