Vis enkel innførsel

dc.contributor.authorKravetc, Tatiana
dc.date.accessioned2022-08-31T07:27:21Z
dc.date.available2022-08-31T07:27:21Z
dc.date.issued2022-06-01
dc.description.abstractIn this paper, we introduce a blending spline type construction into the isogeometric analysis. We consider a general algorithm for solving a number of boundary value problems, including heat equation, wave equation, linear elasticity, etc. The usage of blending spline construction in the isogeometric context mixes standard finite element and NURBS-based approaches while accumulating the benefits of both. Since the blending spline construction is locally represented, the finite element discretization can be formulated in a standard way, while the smooth representation of these splines provides an accurate approximation of the computational domain even on a coarse mesh. Besides the standard L <sup>2</sup> -projection algorithm for the domain approximation, we demonstrate a unique scheme for domain construction based on local surfaces and subsequent hp-refinement. In the proposed paper we focus on the features of blending splines in the isogeometric analysis context, identify possible applications, and provide some numerical analysis.en_US
dc.identifier.citationKravetc T. Isogeometric analysis using a tensor product blending spline construction. Journal of Computational and Applied Mathematics. 2022;414en_US
dc.identifier.cristinIDFRIDAID 2029582
dc.identifier.doi10.1016/j.cam.2022.114438
dc.identifier.issn0377-0427
dc.identifier.issn1879-1778
dc.identifier.urihttps://hdl.handle.net/10037/26483
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of Computational and Applied Mathematics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.titleIsogeometric analysis using a tensor product blending spline constructionen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel