Vis enkel innførsel

dc.contributor.authorPardoux, Etienne
dc.contributor.authorPiatnitski, Andrey
dc.date.accessioned2022-09-20T09:02:20Z
dc.date.available2022-09-20T09:02:20Z
dc.date.issued2012-05-04
dc.description.abstractIn this paper we study the homogenization of a nonautonomous parabolic equation with a large random rapidly oscillating potential in the case of one-dimensional spatial variable. We show that if the potential is a statistically homogeneous rapidly oscillating function of both temporal and spatial variables, then, under proper mixing assumptions, the limit equation is deterministic, and convergence in probability holds. To the contrary, for the potential having a microstructure only in one of these variables, the limit problem is stochastic, and we only have convergence in law.en_US
dc.identifier.citationPardoux E, Piatnitski A. Homogenization of a singular random one-dimensional PDE with time-varying coefficients Annals of Probability. 2012;40(3):1316-1356en_US
dc.identifier.cristinIDFRIDAID 945510
dc.identifier.doi10.1214/11-AOP650
dc.identifier.issn0091-1798
dc.identifier.issn2168-894X
dc.identifier.urihttps://hdl.handle.net/10037/26867
dc.language.isoengen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.journalAnnals of Probability
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2012 Institute of Mathematical Statisticsen_US
dc.titleHomogenization of a singular random one-dimensional PDE with time-varying coefficientsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel