dc.contributor.author | Ghosh, Abhik | |
dc.contributor.author | Conradie, Jeanet | |
dc.date.accessioned | 2022-12-19T14:59:44Z | |
dc.date.available | 2022-12-19T14:59:44Z | |
dc.date.issued | 2022-10-25 | |
dc.description.abstract | Density functional theory calculations with the B3LYP*-D3 method with large STO-QZ4P basis sets unambiguously predict a singlet ground state for Zn-porphyryne. However, the calculations also predict a low singlet–triplet gap of about 0.4 eV and a high adiabatic electron affinity of 2.4 eV. Accordingly, the reactivity of porphyryne species may be dominated by electron transfer, hydrogen abstraction, and proton-coupled electron transfer processes. | en_US |
dc.identifier.citation | Ghosh, Conradie. Porphyryne. ACS Omega. 2022;7(44):40275-40278 | en_US |
dc.identifier.cristinID | FRIDAID 2086671 | |
dc.identifier.doi | 10.1021/acsomega.2c05199 | |
dc.identifier.issn | 2470-1343 | |
dc.identifier.uri | https://hdl.handle.net/10037/27869 | |
dc.language.iso | eng | en_US |
dc.publisher | American Chemical Society | en_US |
dc.relation.journal | ACS Omega | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2022 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | Porphyryne | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |