Show simple item record

dc.contributor.authorGhosh, Abhik
dc.contributor.authorConradie, Jeanet
dc.date.accessioned2022-12-19T14:59:44Z
dc.date.available2022-12-19T14:59:44Z
dc.date.issued2022-10-25
dc.description.abstractDensity functional theory calculations with the B3LYP*-D3 method with large STO-QZ4P basis sets unambiguously predict a singlet ground state for Zn-porphyryne. However, the calculations also predict a low singlet–triplet gap of about 0.4 eV and a high adiabatic electron affinity of 2.4 eV. Accordingly, the reactivity of porphyryne species may be dominated by electron transfer, hydrogen abstraction, and proton-coupled electron transfer processes.en_US
dc.identifier.citationGhosh, Conradie. Porphyryne. ACS Omega. 2022;7(44):40275-40278en_US
dc.identifier.cristinIDFRIDAID 2086671
dc.identifier.doi10.1021/acsomega.2c05199
dc.identifier.issn2470-1343
dc.identifier.urihttps://hdl.handle.net/10037/27869
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.journalACS Omega
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titlePorphyryneen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)