Vis enkel innførsel

dc.contributor.authorErlandsson, Viveka
dc.contributor.authorLeininger, Christopher J.
dc.contributor.authorSadanand, Chandrika
dc.date.accessioned2023-01-12T12:39:06Z
dc.date.available2023-01-12T12:39:06Z
dc.date.issued2022-08-31
dc.description.abstractA negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.en_US
dc.identifier.citationErlandsson, Leininger, Sadanand. Hyperbolic cone metrics and billiards. Advances in Mathematics. 2022;409en_US
dc.identifier.cristinIDFRIDAID 2071059
dc.identifier.doi10.1016/j.aim.2022.108662
dc.identifier.issn0001-8708
dc.identifier.issn1090-2082
dc.identifier.urihttps://hdl.handle.net/10037/28189
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalAdvances in Mathematics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleHyperbolic cone metrics and billiardsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)