dc.contributor.author | Erlandsson, Viveka | |
dc.contributor.author | Leininger, Christopher J. | |
dc.contributor.author | Sadanand, Chandrika | |
dc.date.accessioned | 2023-01-12T12:39:06Z | |
dc.date.available | 2023-01-12T12:39:06Z | |
dc.date.issued | 2022-08-31 | |
dc.description.abstract | A negatively curved hyperbolic cone metric is called rigid
if it is determined (up to isotopy) by the support of its
Liouville current, and flexible otherwise. We provide a
complete characterization of rigidity and flexibility, prove that
rigidity is a generic property, and parameterize the associated
deformation space for any flexible metric. As an application,
we parameterize the space of hyperbolic polygons with the
same symbolic coding for their billiard dynamics, and prove
that generically this parameter space is a point. | en_US |
dc.identifier.citation | Erlandsson, Leininger, Sadanand. Hyperbolic cone metrics and billiards. Advances in Mathematics. 2022;409 | en_US |
dc.identifier.cristinID | FRIDAID 2071059 | |
dc.identifier.doi | 10.1016/j.aim.2022.108662 | |
dc.identifier.issn | 0001-8708 | |
dc.identifier.issn | 1090-2082 | |
dc.identifier.uri | https://hdl.handle.net/10037/28189 | |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.journal | Advances in Mathematics | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2022 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | Hyperbolic cone metrics and billiards | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |