Vis enkel innførsel

dc.contributor.authorYahia, Selma
dc.contributor.authorMeraihi, Yassine
dc.contributor.authorAmar, Ramdane-Cherif
dc.contributor.authorHo, Tu Dac
dc.contributor.authorEldeeb, Hossien
dc.date.accessioned2023-04-03T10:59:27Z
dc.date.available2023-04-03T10:59:27Z
dc.date.issued2023-02-28
dc.description.abstractVehicular Visible light communication (VLC) technology has recently attracted much interest from researchers and scientists. This technology enables connectivity between vehicles and infrastructures along the road by using vehicles’ headlights and taillights as wireless transmitters. The reliability of vehicle-to-vehicle (V2V) VLC systems is affected by several factors, such as car mobility, optics system design, and visibility conditions, where the first two have the most impact on the VLC system performance. This paper, therefore, focuses on the relative positions of the cars and the design of the optics, especially on the receiving end, which has been proposed with the use of a polar detector instead of the rectangular detectors commonly used in the literature. We investigate the achievable gain compared to the conventional detector for different vehicle locations, utilizing a professional optical system design and ray tracing approach. Then, to improve the performance, we introduce the utilization of an imaging receiver by integrating the polar detector with different optical commercial lens combinations, such as Fresnel and Aspherical lenses. To further improve the V2V system performance, we propose a novel optical lens combination design by integrating double-convex lens with half-Plano-concave lens, which allows the correction of more optical aberrations, such as chromatic and spherical aberration. Utilizing the non-sequential ray tracing tools, we designed these VLC systems and perform a realistic channel modeling study considering the typical 3D CAD models of vehicles and roads as well as the possibility of horizontal and vertical movement between the vehicles. Based on the channel impulse responses (CIRs) obtained from the ray tracing simulations, we analyzed the performance of V2V VLC systems with all lens combinations at different vehicle positions on the road. We further investigated the impact of different system parameters on the overall V2V system performance, such as receiver diameter and bandwidth. The obtained results demonstrated that with a carefully chosen system and lens parameters, the proposed system design of lens combination provides an enhancement of up to 7 dB in total received power compared to the case without a lens. Our results also revealed that the proposed system design outperforms the benchmark ones for all lateral displacements and longitudinal distances.en_US
dc.identifier.citationYahia, Meraihi, Amar, Ho T.D., Eldeeb H. Enhancement of Vehicular Visible Light Communication Using Spherical Detector and Custom Lens Combinations. IEEE Access. 2023;11:21600-21611en_US
dc.identifier.cristinIDFRIDAID 2132186
dc.identifier.doi10.1109/ACCESS.2023.3250397
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/10037/28908
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE Access
dc.relation.projectIDUiT Norges arktiske universitet: 2022/87en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleEnhancement of Vehicular Visible Light Communication Using Spherical Detector and Custom Lens Combinationsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)