dc.contributor.author | Riener, Cordian | |
dc.contributor.author | Safey el Din, Mohab | |
dc.date.accessioned | 2023-09-08T09:16:32Z | |
dc.date.available | 2023-09-08T09:16:32Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Let <i><b>R</b></i> be a real closed field. We consider basic semi-algebraic sets defined by <i>n</i>-variate equations/inequalities of s symmetric polynomials and an equivariant family of polynomials, all of them of degree bounded by 2<i>d</i> < <i>n</i>. Such a semi-algebraic set is invariant by the action of the symmetric group. We show that such a set is either empty or it contains a point with at most 2<i>d</i>−1 distinct coordinates. Combining this geometric result with efficient algorithms for real root finding (based on the critical point method), one can decide the emptiness of basic semi-algebraic sets defined by <i>s</i> polynomials of degree <i>d</i> in time <i>(sn)<sup>O(d)</sup></i>. This improves the state-of-the-art which is exponential in <i>n</i>. When the variables <i>x<sub>1</sub>, ..., x<sub>n</sub></i> are quantified and the coefficients of the input system depend on parameters <i>y<sub>1</sub>, ..., y<sub>t</sub></i>, one also demonstrates that the corresponding one-block quantifier elimination problem can be solved in time <i>(sn)<sup>O(d)</sup></i>. | en_US |
dc.identifier.cristinID | FRIDAID 1601288 | |
dc.identifier.uri | https://hdl.handle.net/10037/30805 | |
dc.language.iso | eng | en_US |
dc.relation.uri | https://dl.acm.org/citation.cfm?id=3209023 | |
dc.subject | VDP::Matematikk og naturvitenskap: 400::Matematikk: 410 | en_US |
dc.subject | VDP::Mathematics and natural scienses: 400::Mathematics: 410 | en_US |
dc.title | Real Root Finding for Equivariant Semi-algebraic Systems | en_US |
dc.type | Conference object | en_US |
dc.type | Konferansebidrag | en_US |