Show simple item record

dc.contributor.authorDebus, Sebastian
dc.contributor.authorMoustrou, Philippe
dc.contributor.authorRiener, Cordian Benedikt
dc.contributor.authorVerdure, Hugues
dc.date.accessioned2023-11-06T12:35:39Z
dc.date.available2023-11-06T12:35:39Z
dc.date.issued2023
dc.description.abstractSpecht polynomials classically realize the irreducible representations of the symmetric group. The ideals defined by these polynomials provide a strong connection with the combinatorics of Young tableaux and have been intensively studied by several authors. We initiate similar investigations for the ideals defined by the Specht polynomials associated to the hyperoctahedral group <i>B<sub>n</sub></i>. We introduce a bidominance order on bipartitions which describes the poset of inclusions of these ideals and study algebraic consequences on general Bn-invariant ideals and varieties, which can lead to computational simplifications.en_US
dc.identifier.citationDebus, Moustrou, Riener, Verdure. The poset of Specht ideals for hyperoctahedral groups. Algebraic combinatorics. 2023en_US
dc.identifier.cristinIDFRIDAID 2192246
dc.identifier.doihttps://doi.org/10.48550/arXiv.2206.08925
dc.identifier.issn2589-5486
dc.identifier.urihttps://hdl.handle.net/10037/31685
dc.language.isoengen_US
dc.relation.journalAlgebraic combinatorics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.titleThe poset of Specht ideals for hyperoctahedral groupsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record