dc.contributor.advisor | Bayer, Annette | |
dc.contributor.author | Pettersen, Martin | |
dc.date.accessioned | 2024-02-21T08:37:54Z | |
dc.date.available | 2024-02-21T08:37:54Z | |
dc.date.issued | 2024-03-08 | |
dc.description.abstract | CO<sub>2</sub> is a renewable source of carbon that has not yet been properly utilized. The reason for this is mostly due to its kinetic and thermodynamic stability. The potential renewability of CO<sub>2</sub>, coupled with environmental concerns, has motivated scientists worldwide to develop new artificial carbon cycles for chemical fixation of CO<sub>2</sub>. Unfortunately, the pronounced inertness of CO<sub>2</sub> allows only the synthesis of a range of C1 molecules, often with poor selectivity. These limitations also make enantioselective carbon-carbon (C-C) bond-forming utilizing carbon dioxide (CO<sub>2</sub>) difficult to achieve. Therefore, there has been relatively few examples of enantioselective C-C bondforming reactions reported in the literature. The primary objective of my work is to develop enantioselective C-C bond-forming reactions using CO<sub>2</sub>, with a particular focus on metal-catalyzed enantioselective incorporation of CO<sub>2</sub>. The first catalytic enantioselective hydrocarboxylation was reported in 2016 by Mikami and colleagues. We became interested in the mechanistic details of this transformation and set out to provide computational and experimental insights, on the transformation. The enantioselective boracarboxylation has not yet been explored and is an interesting transformation to produce novel drug precursors. With an interest in enantioselective carboxylations, our group set out to develop an enantioselective method for boracarboxylation of styrenes. As of writing this thesis, the boracarboxylation is currently restricted to alkynes and styrenes. We therefore aimed to expand the applicability of the boracarboxylation to allenes. With the boracarboxylation being similar to hydroboration, we started our study optimizing from known to work hydroboration conditions with CO<sub>2</sub> instead of a proton source. | en_US |
dc.description.abstract | CO<sub>2</sub> er en fornybar kilde til karbon som ennå ikke er godt utnyttet. Årsaken til dette er mest på grunn av dens kinetiske og termodynamiske stabilitet. Den potensielle fornybarheten til CO<sub>2</sub>, kombinert med miljøhensyn, har motivert forskere over hele verden til å utvikle nye kunstige karbonkretsløp for kjemisk fiksering av CO<sub>2</sub>. Dessverre, den høye stabiliteten til CO<sub>2</sub> tillater bare syntese av en rekke C1-molekyler, ofte med dårlig selektivitet. Disse begrensninger gjør også at enantioselektiv karbon-karbon (C-C) bindingsdannende ved bruk av karbon dioksid (CO<sub>2</sub>) er vanskelig å oppnå. Derfor har det vært relativt få eksempler på enantioselektive C-C-bindingsdannende reaksjoner rapportert i litteraturen. Hovedmålet med arbeidet mitt er å utvikle enantioselektiv C-C-bindingsdannende reaksjoner ved bruk av CO<sub>2</sub>, med spesielt fokus på metallkatalysert enantioselektiv inkorporering av CO<sub>2</sub>. Den første katalytiske enantioselektive hydrokarboksyleringen ble rapportert i 2016 av Mikami og kolleger. Vi ble interessert i de mekanistiske detaljene i denne transformasjonen og studerte reaksjonen for å gi beregningsmessig og eksperimentell innsikt om transformasjonen. Den enantioselektive borakarboksyleringen har ennå ikke blitt utforsket og er en interessant transformasjon for å produsere nye medikamentforløpere. Med interesse for enantioselektiv karboksyleringer, satte vår gruppe seg for å utvikle en enantioselektiv metode for borakarboksylering av styrener. Under skriving av denne oppgaven, er borakarboksyleringen begrenset til alkyner og styrenes. Vi hadde derfor som mål å utvide anvendeligheten av borakarboksyleringen til allener. Da borakarboksyleringen ligner på hydroborering, startet vi studien vår med å optimalisere fra kjente hydroborerings betingelser med CO<sub>2</sub> i stedet for en protonkilde. | en_US |
dc.description.doctoraltype | ph.d. | en_US |
dc.description.popularabstract | Carbon dioxide (CO2) is an untapped and renewable source of carbon that presents a unique opportunity for sustainable chemical synthesis. However, the stability of CO2 has resulted in challenges related to harnessing its synthetic potential. In this respect the construction of chiral carbon-carbon bonds incorporating CO2 is particularly challenging. In response, scientists worldwide are actively exploring artificial carbon cycles for the chemical fixation of CO2. Using CO2 as a carbon source is particularly appealing considering the high market value of the resulting products.
This research aims to address the scarcity of enantioselective carbon-carbon (C-C)
bond-forming reactions using CO2. The first study aims to investigate the factors influencing
the enantioselective hydrocarboxylation of unsaturated molecules. Our objective was to delve
into the mechanistic details of the asymmetric C-CO2 bond construction both experimentally
and computationally.
Furthermore, we investigated the unexplored territory of enantioselective
boracarboxylation, a transformative process with potential applications in drug precursor
synthesis. Focusing on styrenes, we developed an enantioselective method for
boracarboxylation.
Our research also aimed to apply the boracarboxylation to allenes. This study not only
expands the substrate toolbox for the boracarboxylation, but also gives access to a diverse range
of borylated carboxylic acids derived from allenes and CO2. | en_US |
dc.description.sponsorship | This work has been supported by the Research Council of Norway (No. 262695, No. 300769, No. 313462), by the Tromsø Research Foundation (No. TFS2016KHH), by Notur – The Norwegian Metacenter for Computational Science through grants of computer time (No. nn9330k and nn4654k), and by NordForsk NordCO2 consortium (No. 85378) and UiT The Arctic University of Norway through funding of the iCCU-project. | en_US |
dc.identifier.uri | https://hdl.handle.net/10037/32994 | |
dc.language.iso | eng | en_US |
dc.publisher | UiT Norges arktiske universitet | en_US |
dc.publisher | UiT The Arctic University of Norway | en_US |
dc.relation.haspart | <p>Paper I: Pavlovic, L., Pettersen, M., Gevorgyan, A., Vaitla, J., Bayer, A. & Hopmann, K.H. (2021). Computational and experimental insights into asymmetric Rh-catalyzed hydrocarboxylation with CO<sub>2</sub>. European Journal of Organic Chemistry, 2021</i>(4), 663-670. Also available in Munin at <a href=https://hdl.handle.net/10037/25345>https://hdl.handle.net/10037/25345</a>.
<p>Paper II: Pettersen, M., Do, C.D., Obst, M.F., Damm, R., Putra, A.E., Gevorgyan, A., Pavlovic, L., Hopmann, K.H. & Bayer, A. Asymmetric boracarboxylation of styrenes using carbon dioxide. (Manuscript under revision). | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2024 The Author(s) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0 | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | en_US |
dc.subject | CO2 | en_US |
dc.subject | Boracarboxylation | en_US |
dc.subject | Hydrocarboxylation | en_US |
dc.subject | Enantioselective synthesis | en_US |
dc.subject | Carboxylation | en_US |
dc.title | Exploring the Potential of CO2: Enantioselective C-C Bond Formation | en_US |
dc.type | Doctoral thesis | en_US |
dc.type | Doktorgradsavhandling | en_US |