Vis enkel innførsel

dc.contributor.authorFerguson, Andrew
dc.contributor.authorOttaviani, Giorgio
dc.contributor.authorSafey el Din, Mohab
dc.contributor.authorTeixeira Turatti, Ettore
dc.date.accessioned2024-09-30T11:01:52Z
dc.date.available2024-09-30T11:01:52Z
dc.date.issued2024-02-10
dc.description.abstractWe study the problem of how many different sum of squares decompositions a general polynomial <i>f</i> with SOS-rank <i>k</i> admits. We show that there is a link between the variety SOS<sub><i>k</sub></i>(<i>f</i>) of all SOS-decompositions of <i>f</i> and the orthogonal group O(<i>k</i>). We exploit this connection to obtain the dimension of SOS<sub><i>k</sub></i>(<i>f</i>) and show that its degree is bounded from below by the degree of O (<i>k</i>). In particular, for <i>k</i> = 2 we show that SOS<sub>2</sub>(<i>f</i>) is isomorphic to O(2) and hence the degree bound becomes an equality. Moreover, we compute the dimension of the space of polynomials of SOS-rank <i>k</i> and obtain the degree in the special case <i>k</i> = 2.en_US
dc.identifier.citationFerguson, Ottaviani, Safey el Din, Teixeira Turatti. On the degree of varieties of sum of squares. Journal of Pure and Applied Algebra. 2024;228(7)en_US
dc.identifier.cristinIDFRIDAID 2290462
dc.identifier.doi10.1016/j.jpaa.2024.107638
dc.identifier.issn0022-4049
dc.identifier.issn1873-1376
dc.identifier.urihttps://hdl.handle.net/10037/34924
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of Pure and Applied Algebra
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleOn the degree of varieties of sum of squaresen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)