Show simple item record

dc.contributor.authorDinvay, Evgueni
dc.contributor.authorSelberg, Sigmund
dc.date.accessioned2024-11-04T13:58:08Z
dc.date.available2024-11-04T13:58:08Z
dc.date.issued2024-07-04
dc.description.abstractConsidered herein is a particular nonlinear dispersive stochastic system consisting of Dirac and Klein-Gordon equations. They are coupled by nonlinear terms due to the Yukawa interaction. We consider a case of homogeneous multiplicative noise that seems to be very natural from the perspective of the least action formalism. We are able to show existence and uniqueness of a corresponding Cauchy problem in Bourgain spaces. Moreover, the regarded model implies charge conservation, known for the deterministic analogue of the system, and this is used to prove a global existence result for suitable initial data.en_US
dc.identifier.citationDinvay, Selberg. A conservative stochastic Dirac-Klein-Gordon system. Journal of Functional Analysis. 2024;287(8)en_US
dc.identifier.cristinIDFRIDAID 2282520
dc.identifier.doihttps://doi.org/10.1016/j.jfa.2024.110565
dc.identifier.issn0022-1236
dc.identifier.issn1096-0783
dc.identifier.urihttps://hdl.handle.net/10037/35427
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of Functional Analysis
dc.relation.projectIDNorges forskningsråd: 262695en_US
dc.relation.projectIDERC-European Research Council: 856408-STUODen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleA conservative stochastic Dirac-Klein-Gordon systemen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)