Vis enkel innførsel

dc.contributor.authorDinvay, Evgueni
dc.contributor.authorSelberg, Sigmund
dc.date.accessioned2024-11-04T13:58:08Z
dc.date.available2024-11-04T13:58:08Z
dc.date.issued2024-07-04
dc.description.abstractConsidered herein is a particular nonlinear dispersive stochastic system consisting of Dirac and Klein-Gordon equations. They are coupled by nonlinear terms due to the Yukawa interaction. We consider a case of homogeneous multiplicative noise that seems to be very natural from the perspective of the least action formalism. We are able to show existence and uniqueness of a corresponding Cauchy problem in Bourgain spaces. Moreover, the regarded model implies charge conservation, known for the deterministic analogue of the system, and this is used to prove a global existence result for suitable initial data.en_US
dc.identifier.citationDinvay, Selberg. A conservative stochastic Dirac-Klein-Gordon system. Journal of Functional Analysis. 2024;287(8)en_US
dc.identifier.cristinIDFRIDAID 2282520
dc.identifier.doihttps://doi.org/10.1016/j.jfa.2024.110565
dc.identifier.issn0022-1236
dc.identifier.issn1096-0783
dc.identifier.urihttps://hdl.handle.net/10037/35427
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of Functional Analysis
dc.relation.projectIDNorges forskningsråd: 262695en_US
dc.relation.projectIDERC-European Research Council: 856408-STUODen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleA conservative stochastic Dirac-Klein-Gordon systemen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)