dc.contributor.author | Zabelina, Yuliya | |
dc.contributor.author | Frediani, Luca | |
dc.date.accessioned | 2024-12-17T12:56:46Z | |
dc.date.available | 2024-12-17T12:56:46Z | |
dc.date.issued | 2024-11-19 | |
dc.description.abstract | The free-particle propagator, a key operator in various algorithms for simulating the time evolution of the Schrödinger equation, is studied. A multiscale approximation of this propagator is constructed, representing the semigroup associated with the free-particle Schrödinger operator in a multiwavelet basis. This representation involves integrals of highly oscillatory functions. These integrals are efficiently discretized using a contour deformation technique, which addresses the challenges posed by earlier discretization methods. | en_US |
dc.identifier.citation | Zabelina, Frediani. Multiresolution of the one dimensional free-particle propagator. Part 1: Construction. Computer Physics Communications. 2024 | en_US |
dc.identifier.cristinID | FRIDAID 2323708 | |
dc.identifier.doi | 10.1016/j.cpc.2024.109436 | |
dc.identifier.issn | 0010-4655 | |
dc.identifier.issn | 1879-2944 | |
dc.identifier.uri | https://hdl.handle.net/10037/36023 | |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.journal | Computer Physics Communications | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2024 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | Multiresolution of the one dimensional free-particle propagator. Part 1: Construction | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |