Vis enkel innførsel

dc.contributor.authorDalmo, Rune
dc.contributor.authorSamko, Natasha Gabatsuyevna
dc.contributor.authorPersson, Lars-Erik
dc.date.accessioned2025-01-21T09:32:30Z
dc.date.available2025-01-21T09:32:30Z
dc.date.issued2024-12-10
dc.description.abstractThe Peetre K-functional is a key object in the development of the real method of interpolation. In this paper we point out a less known relation to wavelet theory and its applications to approximation theory and engineering applications. As a new basis for further development of these studies we present some known properties in the form appropriate for further applications and then derive new information and prove some new results concerning the K-functional and its close relation to (almost) quasi-monotone functions, various indices and interpolation theory. In particular, we extend and unify some known function parameter generalizations of the standard real interpolation spaces (A<sub>0</sub>, A<sub>1</sub>)θ ,<sub>q</sub>.en_US
dc.identifier.citationDalmo, Samko, Persson. Old and new on the Peetre K-functional and its relations to real interpolation theory, quasi-monotone functions and wavelets. Analysis and Mathematical Physics. 2025en_US
dc.identifier.cristinIDFRIDAID 2344379
dc.identifier.doi10.1007/s13324-024-00998-9
dc.identifier.issn1664-2368
dc.identifier.issn1664-235X
dc.identifier.urihttps://hdl.handle.net/10037/36255
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.journalAnalysis and Mathematical Physics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleOld and new on the Peetre K-functional and its relations to real interpolation theory, quasi-monotone functions and waveletsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)