Vis enkel innførsel

dc.contributor.authorMartín-Pérez, Alberto
dc.contributor.authorMartinez-Vega, Beatriz
dc.contributor.authorVilla, Manuel
dc.contributor.authorLeon, Raquel
dc.contributor.authorMartinez de Ternero, Alejandro
dc.contributor.authorFabelo, Himar
dc.contributor.authorOrtega, Samuel
dc.contributor.authorQuevedo, Eduardo
dc.contributor.authorCallico, Gustavo M.
dc.contributor.authorJuarez, Eduardo
dc.contributor.authorSanz, César
dc.date.accessioned2025-03-13T09:53:56Z
dc.date.available2025-03-13T09:53:56Z
dc.date.issued2025-02-18
dc.description.abstractBackground and objective - Cancer is one of the leading causes of death worldwide, and early and accurate detection is crucial to improve patient outcomes. Differentiating between healthy and diseased brain tissue during surgery is particularly challenging. Hyperspectral imaging, combined with machine and deep learning algorithms, has shown promise for detecting brain cancer in vivo. The present study is distinguished by an analysis and comparison of the performance of various algorithms, with the objective of evaluating their efficacy in unifying hyperspectral databases obtained from different cameras. These databases include data collected from various hospitals using different hyperspectral instruments, which vary in spectral ranges, spatial and spectral resolution, as well as illumination conditions. The primary aim is to assess the performance of models that respond to the limited availability of in vivo human brain hyperspectral data. The classification of healthy tissue, tumors and blood vessels is achieved through the utilisation of different algorithms in two databases: HELICoiD and SLIMBRAIN.<p> <p>Methods - This study evaluated conventional and deep learning methods (KNN, RF, SVM, 1D-DNN, 2D-CNN, Fast 3D-CNN, and a DRNN), and advanced classification frameworks (LIBRA and HELICoiD) using cross-validation on 16 and 26 patients from each database, respectively.<p> <p>Results - For individual datasets,LIBRA achieved the highest sensitivity for tumor classification, with values of 38 %, 72 %, and 80 % on the SLIMBRAIN, HELICoiD (20 bands), and HELICoiD (128 bands) datasets, respectively. The HELICoiD framework yielded the best F1 Scores for tumor tissue, with values of 11 %, 45 %, and 53 % for the same datasets. For the Unified dataset, LIBRA obtained the best results identifying the tumor, with a 40 % of sensitivity and a 30 % of F1 Score.en_US
dc.identifier.citationMartín-Pérez, Martinez-Vega, Villa, Leon, Martinez de Ternero, Fabelo, Ortega S, Quevedo, Callico, Juarez, Sanz. Unifying heterogeneous hyperspectral databases for in vivo human brain cancer classification: Towards robust algorithm development. Computer Methods and Programs in Biomedicine Update. 2025;7en_US
dc.identifier.cristinIDFRIDAID 2365030
dc.identifier.doi10.1016/j.cmpbup.2025.100183
dc.identifier.issn2666-9900
dc.identifier.urihttps://hdl.handle.net/10037/36678
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalComputer Methods and Programs in Biomedicine Update
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HORIZON/101137416/SPAIN/3D Decision Support Tool for Brain Tumor Surgery/STRATUM/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)en_US
dc.titleUnifying heterogeneous hyperspectral databases for in vivo human brain cancer classification: Towards robust algorithm developmenten_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)