Vis enkel innførsel

dc.contributor.advisorHaugland-Grange, Marius
dc.contributor.authorSowiński, Mateusz Piotr
dc.date.accessioned2025-03-14T14:27:43Z
dc.date.available2025-03-14T14:27:43Z
dc.date.issued2025-03-28
dc.description.abstractNitroxides are a class of organic radicals that exhibit remarkable stability under ambient conditions due to kinetic, thermodynamic, and electronic factors. Their unpaired electron and stability render nitroxides valuable as probes and polarisation transfer agents in spectroscopy and imaging techniques. In particular, electron paramagnetic resonance (EPR) spectroscopy extensively utilizes nitroxides as spin labels for structural biology applications. These applications require high stability in reducing biological environments and favourable relaxation properties. Both reduction stability and relaxation parameters are heavily influenced by the nitroxide structure, specifically the nature of the substituents at the quaternary α-positions and the nitroxide ring itself. Whilst spirocyclic groups on the nitroxide scaffold provide the latter, such systems are not inherently resistant to reducing conditions. The research presented in this thesis aimed to enhance the stability of spirocyclic nitroxides through various structural modifications and apply these stable probes to investigate protein structures using EPR methods. We conducted comprehensive synthetic, conformational, and kinetic analyses of a diverse panel of spirocyclic nitroxide scaffolds, accompanied by an investigation of their relaxation parameters. We developed three practically applicable spin labels and successfully applied them in protein spin labelling. Recent experiments have demonstrated that these novel spirocyclic spin labels are promising candidates for future use in in-cell EPR measurements.en_US
dc.description.abstractNitroksider er en klasse organiske radikaler som er usedvanlig stabile under normale betingelser på grunn av kinetiske, termodynamiske og elektroniske faktorer. Det uparede elektronet og stabiliteten til nitroksider gjør dem nyttige som prober og polariseringsoverføringsagenter i spektroskopi og avbildningsteknikker. Særlig elektron paramagnetisk resonansspektroskopi (EPR) gjør utstrakt bruk av nitroksider som spinnmerker i anvendelser innen strukturbiologi. Disse anvendelsene krever høy stabilitet i reduserende biologiske miljøer og gunstige relakseringsegenskaper. Både stabilitet mot reduksjon og relakseringsparametre blir sterkt påvirket av strukturen til nitroksider, spesielt egenskapene til substitutentene på de kvaternære α-posisjonene og selve nitroksidringen. Mens spirosykliske substituenter på nitroksidringen gir det sistnevnte, er ikke slike systemer i seg selv motstandsdyktige mot reduserende betingelser. Forskningen presentert i denne avhandlingen hadde som mål å forbedre stabiliteten til spirosykliske nitroksider gjennom ulike modifikasjoner av strukturen deres, og anvende disse stabile probene for å undersøke proteinstrukturer ved bruk av EPR-metoder. Vi gjennomførte grundige syntetiske, konformasjonelle og kinetiske analyser av et variert panel av spirosykliske nitroksid-strukturer, sammen med en undersøkelse av relakseringsparametrene deres. Vi utviklet tre praktisk brukbare spinnmerker og anvendte dem med suksess til spinnmerking av proteiner. Nylig gjennomførte eksperimenter har vist at disse nye spirosykliske spinnmerkene er lovende kandidater for fremtidig bruk i intracellulære EPR-målinger.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractStable organic radicals – carbon-based molecules with unpaired electrons – have distinctive properties that enable numerous unique applications. The stability of such radicals is particularly crucial in applications that utilise their magnetic properties, i.e. the spin of the unpaired electron. These probes can be directly observed through electron paramagnetic resonance (EPR) spectroscopy. By attaching stable organic radicals to ordinary molecules and using them as markers, it is possible to observe any molecule using EPR spectroscopy. Due to the properties of radicals, measurements can be conducted with exceptional sensitivity and minimal background noise, making this approach particularly appealing for studying biological systems. However, the stability of the radicals remains the limiting factor in this context. This thesis aims to develop nitroxide probes that are both stable and sensitive enough to examine the structure of biomolecules relevant to medicine and drug discovery.en_US
dc.description.sponsorshipTromsø Research Foundation (TFS project ID: 18_CANS)en_US
dc.identifier.isbn978-82-8236-618-2 - print
dc.identifier.isbn978-82-8236-619-9 - pdf
dc.identifier.urihttps://hdl.handle.net/10037/36696
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.relation.haspart<p>Paper I: Sowiński, M.P., Gahlawat, S., Lund, B.A., Warnke, A.L., Hopmann, K.H., Lovett, J.E. & Haugland, M.M. (2023). Conformational tuning improves the stability of spirocyclic nitroxides with long paramagnetic relaxation times. <i>Communications Chemistry, 6</i>, 111. Also available in Munin at <a href=https://hdl.handle.net/10037/29641>https://hdl.handle.net/10037/29641</a>. <p>Paper II: Sowiński, M.P., Warnke, A.L., Lund, B.A., Skagseth, S., Cordes, D.B., Lovett, J.E. & Haugland, M.M. (2024). Spirocyclic pyrrolidinyl nitroxides with exo-methylene substituents <i>ChemPlusChem, 89</i>, e202400387. Also available in Munin at <a href=https://hdl.handle.net/10037/36150>https://hdl.handle.net/10037/36150</a>. <p>Paper III: Sowiński, M.P., Mocanu, E.M., Ruskin-Dodd, H., McKay, A.P., Cordes, D.B., Lovett, J.E. & Haugland, M.M. (2025). Sigmatropic rearrangement enables access to a highly stable spirocyclic nitroxide for protein spin labelling. ChemRxiv, prepint, 2025. Also available at <a href=https://doi.org/10.26434/chemrxiv-2025-g4kjr>https://doi.org/10.26434/chemrxiv-2025-g4kjr</a>. <p>Paper IV: Sowiński, M.P., Mocanu, E.M., Lovett, J.E. & Haugland, M.M. Spirocyclic pyrrolidinyl nitroxides for protein spin labelling. (Manuscript).en_US
dc.relation.isbasedonSowiński, M.P., Gahlawat, S., Lund, B.A., Warnke, A.-L., Hopmann, K.H., Lovett, J.E. & Haugland, M.M. (2022). Replication Data for: Conformational tuning improves the stability of spirocyclic nitroxides with long paramagnetic relaxation times. DataverseNO, <a href=https://doi.org/10.18710/UQMMZE>https://doi.org/10.18710/UQMMZE</a>.en_US
dc.relation.isbasedonSowiński, M.P., Warnke, A.-L., Lund, B.A., Skagseth, S., Cordes, D.B., Lovett, J.E. & Haugland, M.M. (2024). Replication Data for: Spirocyclic pyrrolidinyl nitroxides with exo-methylene substituents. DataverseNO, <a href=https://doi.org/10.18710/PIZ7H1>https://doi.org/10.18710/PIZ7H1</a>.en_US
dc.relation.isbasedonSowiński, M.P., Mocanu, E., Ruskin-Dodd, H., Cordes, D.B., Lovett, J.E. & Haugland-Grange, M. (2025). Replication Data for: Sigmatropic rearrangement enables access to a highly stable spirocyclic nitroxide for protein spin labelling. DataverseNO, <a href=https://doi.org/10.18710/VC1H83>https://doi.org/10.18710/VC1H83</a>.en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.subjectNitroxidesen_US
dc.subjectRadicalsen_US
dc.subjectAscorbateen_US
dc.subjectElectron paramagnetic resonance spectroscopy EPR (ESR)en_US
dc.subjectReduction stabilityen_US
dc.subjectProteinsen_US
dc.subjectPulsed electron-electron double resonance (PELDOR)en_US
dc.subjectDouble electron-electron resonance (DEER)en_US
dc.subjectSpirocyclicen_US
dc.subjectConformational analysisen_US
dc.subjectPhase memory time (Tm)en_US
dc.subjectX-ray crystallographyen_US
dc.titleStable spirocyclic nitroxide spin labelsen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)