Show simple item record

dc.contributor.advisorRaïs, Issam
dc.contributor.authorOmond, Antoine
dc.date.accessioned2025-05-09T09:30:25Z
dc.date.available2025-05-09T09:30:25Z
dc.date.issued2025-05-23
dc.description.abstractCyber-Physical systems (CPS) deployed in scarce-resource environments like the Arctic Tundra for in-situ and long-term observation face extreme conditions. Nodes deployed on the field are under a limited energy budget. To save energy and increase their lifetimes, nodes are forced to alternate between short uptime periods and long sleeping periods. Uptime schedules depend notably on observation tasks and are not synchronised. Nodes of the CPS may collaborate to provide services such as data aggregation, analytics, etc. Due to a lack of network infrastructure, nodes have to rely on peer-to-peer connections to communicate. Nodes are able to communicate only during uptime, when their uptime periods overlap. When dealing with short and non-synchronised uptimes, opportunities for communication can be very low. Due to the Arctic Tundra conditions, nodes of the CPS are forced to be autonomous for long periods (from 6 months to a year). During these periods, nodes of the CPS have to autonomously adapt to external events by reconfiguring their systems. Due to collaboration, reconfiguration of collaborative nodes must be coordinated. Due to scarce connectivity within the CPS and its isolation from external systems, a central authority is most of the time unreachable. Nodes must be able to coordinate their reconfiguration with other nodes in a decentralised manner. Due to scarce connectivity, coordinating such reconfiguration between nodes can impose a significant energy consumption overhead on nodes and take a long time to converge. This manuscript proposes to study the decentralised reconfiguration of a Cyber-Physical system with sleeping nodes. It provides a solution to define and coordinate the execution of decentralised reconfiguration programs between sleeping nodes. Based on this solution, it aims at extensively studying the performances in terms of energy consumption and duration of such reconfiguration according to the Arctic Tundra characteristics.en_US
dc.description.abstractCyberfysiske systemer (CPS) som brukes i miljøer med knappe ressurser, som den arktiske tundraen, for in-situ- og langtidsobservasjon, står overfor ekstreme forhold. Noder utplassert i felten har et begrenset energibudsjett. For å spare energi og øke levetiden må nodene veksle mellom korte oppetidsperioder og lange soveperioder. Oppetidsplanene avhenger særlig av observasjonsoppgavene og er ikke synkroniserte. Nodene i CPS kan samarbeide om å tilby tjenester som dataaggregering, analyse osv. På grunn av manglende nettverksinfrastruktur må nodene basere seg på node-til-node-forbindelser for å kommunisere. Nodene kan bare kommunisere i oppetid, når oppetidsperiodene deres overlapper hverandre. Når man har å gjøre med korte og ikke-synkroniserte oppetider, kan mulighetene for kommunikasjon være svært små. På grunn av forholdene på den arktiske tundraen er nodene i CPS tvunget til å være autonome i lange perioder (fra 6 måneder til ett år). I løpet av disse periodene må nodene i CPS tilpasse seg eksterne hendelser ved å rekonfigurere systemene sine. På grunn av samarbeidet må rekonfigurasjonen av samarbeidende noder koordineres. På grunn av de begrensede forbindelsesmulighetene i CPS og isolasjonen fra eksterne systemer er det meste av tiden umulig å nå en sentral myndighet. Noder må kunne koordinere rekonfigurasjonen med andre noder på en desentralisert måte. På grunn av den knappe konnektiviteten kan koordinering av slik rekonfigurasjon mellom noder medføre et betydelig energiforbruk og ta lang tid å oppnå. I dette manuskriptet studeres desentralisert rekonfigurasjon av et cyberfysisk system med sovende noder. Det gir en løsning for å definere og koordinere utførelsen av desentraliserte rekonfigurasjonsprogrammer mellom sovende noder. Basert på denne løsningen tar det sikte på å studere ytelsen i form av energiforbruk og varighet av en slik rekonfigurasjon i henhold til egenskapene til den arktiske tundraen.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractCyber-physical systems deployed in scarce-resource environments like the Arctic Tundra face extreme conditions. Nodes deployed in such environments have to carefully manage a limited energy budget, forcing them to alternate long sleeping periods and brief uptime periods. While sleeping, nodes save energy but cannot communicate with other nodes. During uptimes, nodes can collaborate for data exchanges or computations by providing services to other nodes. Due to lack of network infrastructure, nodes have to rely on peer-to-peer connections to communicate. Nodes are able to communicate only during uptime, when their uptime periods overlap. When dealing with short and non-synchronised uptimes, opportunities for communication are low. Due to harsh weather, physical access to the nodes deployed in the field is prevented for long periods (e.g., 6 months during winter). During these periods, nodes have to be autonomous. Nodes have to adapt to their surrounding environment by reconfiguring their systems. Due to collaboration, nodes of the CPS form a distributed system, where services can be coupled between nodes. In a broad sense, dynamic reconfiguration of distributed systems (software, services, infrastructure) has been widely studied in the industry and academic literature. Distributed systems are characterised by their modular architecture. A modular system can be reconfigured by modification of individual modules and their composition (e.g., services). For instance, a system composed of clients connected to a database can be reconfigured by adding/removing and connecting/disconnecting clients to the database. Solutions dealing with reconfiguration often consider a centralised paradigm. In such case, one or multiple central entities are responsible for coordinating the reconfiguration of the whole system. This approach may not be suited for contexts where nodes are most of the time isolated. When dealing with isolated nodes, a central entity may be unreachable most of the time. In such cases, a decentralised reconfiguration paradigm might be better suited. In this paradigm, each node has the ability to reconfigure itself and coordinate its reconfiguration with others. To this end, nodes should have access to a common reconfiguration solution allowing different and potentially heterogeneous nodes to coordinate their reconfiguration. This manuscript proposes to study the decentralised reconfiguration of a Cyber-Physical system with sleeping nodes. It provides a solution to define and coordinate the execution of decentralised reconfiguration programs between sleeping nodes. Based on this solution, it aims at extensively studying the performances in terms of energy consumption and duration of such reconfiguration according to the Arctic Tundra characteristics. To this end, this manuscript provides the following contributions. First, the design and implementation of a decentralised reconfiguration solution, named Concerto-D, allowing to coordinate a reconfiguration between sleeping nodes. Second, a validation of the capabilities of Concerto-D on different reconfiguration scenarios and an evaluation of its performance in time compared to another solution from the literature. Third, a study of the impact of non-synchronised sleeping nodes on reconfiguration duration. Fourth, a study of a trade-off between nodes' uptime duration and reconfiguration duration. Fifth and sixth, an evaluation and study of the energy consumption and duration of a decentralised reconfiguration according to different parameters relevant for CPSs deployed in the Arctic Tundra.en_US
dc.description.sponsorshipFinancing for the DAO project, supported by the Research Council of Norway (RCN) IKTPluss program, project number 270672.en_US
dc.identifier.isbn978-82-8236-625-0 (electronic/pdf version)
dc.identifier.isbn978-82-8236-624-3 (printed version)
dc.identifier.urihttps://hdl.handle.net/10037/37036
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.relation.haspart<p>This thesis is based on the following papers: <p>Omond, A., Coullon, H., Rais, I & Anshus, O. (2023). Leveraging Relay Nodes to Deploy and Update Services in a CPS with Sleeping Nodes. <i>2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Danzhou, China, 2023</i>, 532-539, available at <a href=https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00102>https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00102</a>. Accepted manuscript version available in Munin at <a href=https://hdl.handle.net/10037/36093>https://hdl.handle.net/10037/36093</a>. <p>Omond, A., Rais, I. & Coullon, H. (2023). Evaluating the energy consumption of adaptation tasks for a CPS in the Arctic Tundra. <i>2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Danzhou, China, 2023</i>, 681-688, available at <a href=https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00122>https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00122</a>. Accepted manuscript version available in Munin at <a href=https://hdl.handle.net/10037/36092>https://hdl.handle.net/10037/36092</a>. <p>Philippe, J., Omond, A., Coullon, H., Prud'Homme, C. & Raïs, I. (2024). Fast Choreography of Cross-DevOps Reconfiguration with Ballet: A Multi-Site OpenStack Case Study. <i>2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Rovaniemi, Finland, 2024</i>, 1-11, available at <a href=https://doi.org/10.1109/SANER60148.2024.00007>https://doi.org/10.1109/SANER60148.2024.00007</a>. Accepted manuscript version available in Munin at <a href=https://hdl.handle.net/10037/36938>https://hdl.handle.net/10037/36938</a>.en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.subjectreconfigurationen_US
dc.subjectCPSen_US
dc.subjectdistributed systemsen_US
dc.subjectsleeping nodesen_US
dc.subjectenergyen_US
dc.titleStudy of the energy consumption and duration of a Cyber-Physical System reconfiguration in the Arctic Tundra: from experiments on real infrastructure to extensive simulationsen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)