Vis enkel innførsel

dc.contributor.advisorBremdal, Bernt
dc.contributor.advisorAyyalasomayajula, Kalyan
dc.contributor.authorRefsvik, Kevin Birger Røstgård
dc.date.accessioned2025-07-22T08:37:08Z
dc.date.available2025-07-22T08:37:08Z
dc.date.issued2025
dc.description.abstractThe goal of the project is to use and suit a transformer based foundation model such as Lag-Llama (https://arxiv.org/abs/2310.08278) to forecast energy prices. Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities compared to a wide range for forecasting models. The forecasting task should focus on general one-step (t+1) and multi-step predictions (t+n). Forecasts that can predict extremes (maximum prices and minimum prices ) are especially important. Both univariate and multivariate forecasting should be addressed in accordance with findings documented in https://m unin.uit.no/handle/10037/32757?show=full&locale-attribute=en.
dc.description.abstract
dc.identifier.urihttps://hdl.handle.net/10037/37810
dc.identifierno.uit:wiseflow:7269007:62224455
dc.language.isoeng
dc.publisherUiT The Arctic University of Norway
dc.rights.holderCopyright 2025 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleExperimental Transformer System for Time Series Forecasting
dc.typeMaster thesis


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)