dc.contributor.advisor | Wood, Shona | |
dc.contributor.author | Markussen, Fredrik Andreas Fasth | |
dc.date.accessioned | 2025-08-19T10:13:30Z | |
dc.date.available | 2025-08-19T10:13:30Z | |
dc.date.embargoEndDate | 2027-09-05 | |
dc.date.issued | 2025-09-05 | |
dc.description.abstract | Endothermic animals have inherently high metabolic rates, granting advantages over ectotherms such as increased aerobic capacity, thermal independence, and niche expansion. However, the energy demands of endothermy increase disproportionately with decreasing body size. To mitigate these energetic costs, some endotherms employ metabolic flexibility strategies like torpor, a profound metabolic rate reduction. Seasonal hibernation exemplifies torpor through extended periods of reduced metabolism, enabling survival during adverse environmental conditions. Golden hamsters (<i>Mesocricetus auratus</i>) exhibit seasonal hibernation characterized by torpor-arousal (T-A) cycling, marked by body temperature drops to approximately 7°C interspersed with periodic arousals to normal temperatures (~35°C). Although seemingly paradoxical due to increased energy costs, T-A cycling implies a critical homeostatic necessity to periodically rewarm. The specific signals initiating arousal remain unclear, but accumulating or depleting metabolites interacting with brain circuits have been hypothesized. This thesis investigates mechanisms underlying T-A cycling in Golden hamsters. Paper I developed welfare-oriented methods for inducing and monitoring hibernation, identifying activated non-neuronal cells (tanycytes, pituicytes, and choroid epithelial cells) correlating with arousal initiation. These cells interface with the blood and cerebrospinal fluid (CSF), potentially sensing metabolite changes. Paper II used untargeted metabolomics to reveal accumulating uremic retention solutes and disrupted metabolic pathways in blood during torpor. Paper III established a method for sampling CSF, uncovering dynamic metabolome changes correlated with core body temperature. Integrating findings, this thesis proposes a speculative model where interactions among gut, kidneys, brain, and brown adipose tissue during torpor lead to cumulative reactive oxygen species and uremic solute buildup, eventually triggering the physiological necessity of periodic arousals. | en_US |
dc.description.abstract | Endoterme (varmblodige) dyr har en iboende høy basalmetabolisme som gir fordeler sammenlignet med ektoterme (vekselvarme) dyr, inkludert økt aerob kapasitet, temperaturuavhengighet og evne til å utvide nisjer. Denne høye metabolismen er energikrevende, og noen endoterme dyr har derfor utviklet metabolske tilpasninger for å redusere energikostnadene. En slik tilpasning er dvale, en dyp og langvarig nedregulering av metabolismen som reduserer energibruken med over 96 %, med kroppstemperaturer ned mot 0–10°C. Sesongbasert hibernering innebærer gjentatte sykluser av dvale og kortvarige perioder med oppvarming til normal kroppstemperatur, noe som paradoksalt nok øker de totale energikostnadene. Disse oppvarmingsperiodene antas å skyldes opphopning eller mangel på bestemte metabolitter som signaliserer behov for oppvåkning. Denne avhandlingen undersøker reguleringen av denne syklusen hos gullhamster (<i>Mesocricetus auratus</i>). Artikkel I utvikler metoder for velferdsfokusert induksjon og overvåking av dvale og identifiserer aktiverte ikke-nevronale celler (tanycytter, pituicytter og choroid plexus-celler) ved starten av oppvarmingen. Artikkel II bruker metabolomikk og finner akkumulering av uremiske stoffer og metabolske forstyrrelser i blodet under dvale. Artikkel III etablerer en teknikk for å ta prøver av cerebrospinalvæske fra hjernens tredje ventrikkel, og viser dynamiske endringer i metabolitter som korrelerer med kroppstemperatur under dvalesyklusene. Basert på disse funnene foreslår avhandlingen en modell der interaksjoner mellom tarm, nyrer, hjerne og brunt fettvev under dvale fører til opphopning av reaktive oksygenforbindelser og uremiske stoffer, som ved kritiske nivåer utløser oppvåkning. | en_US |
dc.description.doctoraltype | ph.d. | en_US |
dc.description.popularabstract | Some animals, like Golden hamsters, can survive harsh winters by entering hibernation. This is a state where their bodies dramatically slow down, using far less energy. Hibernation is a survival strategy that allows animals to endure cold periods when food is scarce, such as winter. During hibernation, hamsters lower their body temperature to around 7°C, nearly as cold as their surroundings, and stay this way for days at a time. But periodically, they “wake up,” quickly rewarming themselves back to normal temperature for a short time before going back into cold temperature.
Scientists believe there must be an important biological reason for them. However, it’s still unclear what exactly triggers a hibernating animal to rewarm.
This research aimed to investigate what is happening inside a hamster’s body and brain during these cycles. Using welfare-oriented methods, we monitored hibernating hamsters and studied their blood and brain fluids. We found that certain support cells in the brain, which are in contact with both the bloodstream and brain fluids, become active just before the animal rewarms. We also discovered that as hibernation continues, products from the gut bacterial flora build up in the blood. When these substances reach high enough levels, they may signal the body that it’s time to “wake up” and restore normal function.
In summary, our findings suggest that hibernating hamsters periodically “wake up” from torpor because products build up during the cold period, and the body needs to rewarm to re-balance metabolism. | en_US |
dc.description.sponsorship | ERC, HiTime, 101086671
Arctic Seasonal Timekeeping Initiative (ASTI) grant
Tromsø Forskningsstiftelse (TFS) starter grant TFS2016SW
TFS infrastructure grant (IS3_17_SW)
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. The | en_US |
dc.identifier.isbn | 978-82-8266-285-7 | |
dc.identifier.uri | https://hdl.handle.net/10037/38004 | |
dc.language.iso | eng | en_US |
dc.publisher | UiT The Arctic University of Norway | en_US |
dc.publisher | UiT Norges arktiske universitet | en_US |
dc.relation.haspart | <p>Paper I: Markussen, F.A.F., Cázarez-Márquez, F., Melum, V.J., Hazlerigg, D.G. & Wood, S.H. (2024). c-fos induction in the choroid plexus, tanycytes and pars tuberalis is an early indicator of spontaneous arousal from torpor in a deep hibernator. <i>Journal of Experimental Biology, 227</i>(10), jeb247224. Also available in Munin at <a href=https://hdl.handle.net/10037/35139>https://hdl.handle.net/10037/35139</a>.
<p>Paper II: Markussen, F.A.F., Cázarez-Márquez, F., Nuñez Egido, S., Pitelkova, I., Hazlerigg, D. & Wood, S. Uremic retention solutes: Candidate factors for an accumulation and depletion model of torpor arousal cycling in a multiday hibernator. (Manuscript).
<p>Paper III: Markussen, F.A.F., Cázarez-Márquez, F., Pitelkova, I., Hazlerigg, D.G. & Wood, S.H. Proof of concept: Continuous sampling of cerebrospinal fluid from the 3rd ventricle of the hypothalamus during hibernation. (Manuscript). | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/ERC/101086671/EU/HiTime/HiTime Hibernation timing to reveal mechanisms of rheostasis/ | en_US |
dc.rights.accessRights | embargoedAccess | en_US |
dc.rights.holder | Copyright 2025 The Author(s) | |
dc.subject | Hibernation | en_US |
dc.subject | Torpor | en_US |
dc.subject | Arousal | en_US |
dc.subject | Golden hamster | en_US |
dc.title | Explorations into the control of torpor arousal cycling in the Golden hamster (Mesocricetus auratus) | en_US |
dc.type | Doctoral thesis | en_US |
dc.type | Doktorgradsavhandling | en_US |