Vis enkel innførsel

dc.contributor.advisorJakobsen, Per
dc.contributor.authorKilen, Isak Ragnvald
dc.date.accessioned2012-08-17T12:22:19Z
dc.date.available2012-08-17T12:22:19Z
dc.date.issued2012-06-19
dc.description.abstractIn this thesis a set of regularized boundary integral equation are introduced that can be used to calculate the Casimir force induced by a two dimensional scalar field. The boundary integral method is compared to the functional integral method and mode summation where possible. Comparisons are done for the case of two parallel plates, two concentric circles and two adjacent circles. The results indicate that the boundary integral method correctly predicts the geometry dependence of the Casimir force on the test problems, but that its value is missing a factor of two compared to the functional integral method and mode summation. After applying various validation procedures on the numerical implementation including a powerful test based on artificial sources, it is concluded that with high probability the missing factor of two is lost somewhere in the theory leading up to the regularized boundary integral equations.en
dc.identifier.urihttps://hdl.handle.net/10037/4376
dc.identifier.urnURN:NBN:no-uit_munin_4092
dc.language.isoengen
dc.publisherUniversitetet i Tromsøen
dc.publisherUniversity of Tromsøen
dc.rights.accessRightsopenAccess
dc.rights.holderCopyright 2012 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subject.courseIDMAT-3900en
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413en
dc.titleNumerical calculation of Casimir forcesen
dc.typeMaster thesisen
dc.typeMastergradsoppgaveen


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)