Vis enkel innførsel

dc.contributor.authorIllian, Janine
dc.contributor.authorSørbye, Sigrunn Holbek
dc.contributor.authorRue, Håvard
dc.date.accessioned2013-03-11T10:05:03Z
dc.date.available2013-03-11T10:05:03Z
dc.date.issued2012
dc.description.abstractThis paper develops methodology that provides a toolbox for routinely fitting complex models to realistic spatial point pattern data. We consider models that are based on log-Gaussian Cox processes and include local interaction in these by considering constructed covariates. This enables us to use integrated nested Laplace approximation and to considerably speed up the inferential task. In addition, methods for model comparison and model assessment facilitate the modelling process. The performance of the approach is assessed in a simulation study. To demonstrate the versatility of the approach, models are fitted to two rather different examples, a large rainforest data set with covariates and a point pattern with multiple marks.en
dc.identifier.citationAnnals of Applied Statistics 6(2012) nr. 4 s. 1499-1530en
dc.identifier.cristinIDFRIDAID 978032
dc.identifier.doihttp://dx.doi.org/10.1214/11-AOAS530
dc.identifier.issn1932-6157
dc.identifier.urihttps://hdl.handle.net/10037/4945
dc.identifier.urnURN:NBN:no-uit_munin_4653
dc.language.isoengen
dc.publisherInstitute of Mathematical Statisticsen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en
dc.titleA toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA)en
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel