Vis enkel innførsel

dc.contributor.authorGhosh, Anil K.
dc.contributor.authorGodtliebsen, Fred
dc.date.accessioned2013-03-11T11:14:53Z
dc.date.available2013-03-11T11:14:53Z
dc.date.issued2012
dc.description.abstractTraditional parametric and nonparametric classifiers used for statistical pattern recognition have their own strengths and limitations. While parametric methods assume some specific parametric models for density functions or posterior probabilities of competing classes, nonparametric methods are free from such assumptions. So, when these model assumptions are correct, parametric methods outperform nonparametric classifiers, especially when the training sample is small. But, violations of these assumptions often lead to poor performance by parametric classifiers, where nonparametric methods work well. In this article, we make an attempt to overcome these limitations of parametric and nonparametric approaches and combine their strengths. The resulting classifiers, denoted the hybrid classifiers, perform like parametric classifiers when the model assumptions are valid, but unlike parametric classifiers, they also provide safeguards against possible deviations from parametric model assumptions. In this article, we propose some multiscale methods for hybrid classification, and their performance is evaluated using several simulated and benchmark data sets.en
dc.identifier.citationPattern Recognition 45(2012) nr. 6 s. 2288-2298en
dc.identifier.issn0031-3203
dc.identifier.otherFRIDAID 906221
dc.identifier.otherhttp://dx.doi.org/10.1016/j.patcog.2011.12.002
dc.identifier.urihttp://hdl.handle.net/10037/4948
dc.identifier.urnURN:NBN:no-uit_munin_4645
dc.language.isoengen
dc.publisherElsevier Scienceen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en
dc.titleOn hybrid classification using model assisted posterior estimatesen
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


Tilhørende fil(er)

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel