Vis enkel innførsel

dc.contributor.authorKruglikov, Boris
dc.contributor.authorMorozov, Oleg
dc.date.accessioned2013-03-13T09:47:54Z
dc.date.available2013-03-13T09:47:54Z
dc.date.issued2012
dc.description.abstractThe group of area preserving diffeomorphisms showed importance in the problems of self-dual gravity and integrability theory. We discuss how representations of this infinite-dimensional Lie group can arise in mathematical physics from pure local considerations. Then using Lie algebra extensions and cohomology we derive the second Plebański equation and its geometry. We do not use Kähler or other additional structures but obtain the equation solely from the geometry of area preserving transformations group. We conclude that the Plebański equation is Lie remarkable.en
dc.identifier.citationJournal of Mathematical Physics 53(2012) nr. 8en
dc.identifier.cristinIDFRIDAID 944450
dc.identifier.doihttp://dx.doi.org/10.1063/1.4739749
dc.identifier.issn0022-2488
dc.identifier.urihttps://hdl.handle.net/10037/4965
dc.identifier.urnURN:NBN:no-uit_munin_4713
dc.language.isoengen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Algebra/algebraic analysis: 414en
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Algebra/algebraisk analyse: 414en
dc.titleSDiff(2) and uniqueness of the Plebanski equationen
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel