dc.contributor.author | Kruglikov, Boris | |
dc.contributor.author | Morozov, Oleg | |
dc.date.accessioned | 2013-03-13T09:47:54Z | |
dc.date.available | 2013-03-13T09:47:54Z | |
dc.date.issued | 2012 | |
dc.description.abstract | The group of area preserving diffeomorphisms showed importance in the problems of self-dual gravity and integrability theory. We discuss how representations of this infinite-dimensional Lie group can arise in mathematical physics from pure local considerations. Then using Lie algebra extensions and cohomology we derive the second Plebański equation and its geometry. We do not use Kähler or other additional structures but obtain the equation solely from the geometry of area preserving transformations group. We conclude that the Plebański equation is Lie remarkable. | en |
dc.identifier.citation | Journal of Mathematical Physics 53(2012) nr. 8 | en |
dc.identifier.cristinID | FRIDAID 944450 | |
dc.identifier.doi | http://dx.doi.org/10.1063/1.4739749 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.uri | https://hdl.handle.net/10037/4965 | |
dc.identifier.urn | URN:NBN:no-uit_munin_4713 | |
dc.language.iso | eng | en |
dc.rights.accessRights | openAccess | |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Algebra/algebraic analysis: 414 | en |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Algebra/algebraisk analyse: 414 | en |
dc.title | SDiff(2) and uniqueness of the Plebanski equation | en |
dc.type | Journal article | en |
dc.type | Tidsskriftartikkel | en |
dc.type | Peer reviewed | en |