Vis enkel innførsel

dc.contributor.advisorRypdal, Kristoffer
dc.contributor.authorØstvand, Lene
dc.date.accessioned2014-06-17T12:48:26Z
dc.date.available2014-06-17T12:48:26Z
dc.date.issued2014-05-23
dc.description.abstractLong-range memory (LRM) has been found in numerous natural data records, both in geophysics and other fields. In this thesis LRM in surface temperature time series is studied, and comparison with short-range memory (SRM) models performed. Trends are important in climate studies, but the trend definition is ambiguous. Two different approaches are included here: the trend described as a function with parameters estimated from the data, and a response model to external forcing. The most commonly used trend function is the linear trend, often used as a measure of anthropogenic effects on global warming. The significance of the trend is dependent on the noise model assumed to describe the data, and here AR(1) and fractional Gaussian noise (fGn) are used. Some methods for investigating SRM and LRM are described and applied to some selected examples. Comparison of SRM and LRM models is also included. The thesis also includes a literature review. In the scientific literature mostly local temperature records have been analysed with regards to LRM. Global and hemispheric temperature means are far less studied, so this has been the main focus in this thesis. Three papers are included where the LRM properties of local and global instrumental records, temperature reconstructions and simulated temperature from climate model experiments are studied. In Paper I and II, a trend analysis is also performed. The overall conclusion that can be drawn from the present work is that long-range persistence on time scales from years to centuries is ubiquitous in observed Earth surface temperature records, and that similar persistence is present in the most advanced climate models to date. This persistence weakens the significance of observed temperature trends, but not enough to render the rising temperature trends throughout the last century statistically insignificant.en
dc.description.doctoraltypeph.d.en
dc.description.popularabstractLangtidshukommelse i overflatetemperatur er studert med ulike metoder. Lokale og globale målinger, temperaturrekonstruksjoner og simulert temperatur fra klimamodeller er analysert. Langtidshukommelse er et eksisterende fenomen i temperaturmålingene på tidsskalaer fra år til århundrer, og innebærer at dagens temperaturer er påvirket av temperatur langt tilbake i tid. Dette blir gjenskapt i de mest avanserte klimamodellene som finnes i dag. Havdynamikk er den viktigste årsaken at langtidshukommelse oppstår. Fenomenet minsker signifikansen til observerte økende trender i temperatur, men kan ikke forklare oppvarming for de siste hundre år alene. Dette er i samsvar med at den viktigste årsaken til global oppvarming er menneskeskapte utslipp.en
dc.identifier.isbn978-82-8236-135-4
dc.identifier.urihttps://hdl.handle.net/10037/6391
dc.identifier.urnURN:NBN:no-uit_munin_6016
dc.language.isoengen
dc.publisherUiT Norges arktiske universiteten
dc.publisherUiT The Arctic University of Norwayen
dc.rights.accessRightsopenAccess
dc.rights.holderCopyright 2014 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411en
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Analyse: 411en
dc.titleLong Range Memory in Time Series of Earth Surface Temperatureen
dc.typeDoctoral thesisen
dc.typeDoktorgradsavhandlingen


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)