Now showing items 1-2 of 2

    • Hardy-type inequalities in fractional h-discrete calculus 

      Persson, Lars Erik; Oinarov, Ryskul; Shaimardan, Serikbol (Journal article; Tidsskriftartikkel; Peer reviewed, 2018-04-04)
      The first power weighted version of Hardy’s inequality can be rewritten as [<i>mathematical formula</i>] where the constant <i>C</i> =[<i>p</i> / <i>p</i> - <i><b>a</b></i> - 1]<sup><i>p</i></sup> is sharp. This inequality holds in the reversed direction when<math xmlns="http://www.w3.org/1998/Math/MathML"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi><i>p</i></mi> <mo>&lt;</mo> <mn>1</mn> ...
    • Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator 

      Persson, Lars Erik; Shaimardan, Serikbol (Peer reviewed, 2015-09-24)
      We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n∈Nn∈N. Some new Hardy-type inequalities for this operator are proved and discussed.