ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Excitation Energies from Real-Time Propagation of the Four-Component Dirac–Kohn–Sham Equation

Permanent lenke
https://hdl.handle.net/10037/8702
DOI
https://doi.org/10.1021/ct501078d
Thumbnail
Åpne
article.pdf (1.126Mb)
(PDF)
Dato
2015-01-21
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Repisky, Michal; Konecny, Lukas; Kadek, Marius; Komorovsky, Stanislav; Malkina, Olga L.; Malkin, Vladimir G.; Ruud, Kenneth
Sammendrag
We report the first implementation of real-time time-dependent density functional theory (RT-TDDFT) at the relativistic four-component level of theory. In contrast to the perturbative linear-response TDDFT approach (LR-TDDFT), the RT-TDDFT approach performs an explicit time propagation of the Dirac–Kohn–Sham density matrix, offering the possibility to simulate molecular spectroscopies involving strong electromagnetic fields while, at the same time, treating relativistic scalar and spin–orbit corrections variationally. The implementation is based on the matrix representation of the Dirac–Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting the noncollinear Kramers unrestricted formalism implemented in the program ReSpect. We also present an analytic form for the delta-type impulse commonly used in RT-TDDFT calculations, as well as a dipole-weighted transition matrix analysis, facilitating the interpretation of spectral transitions in terms of ground-state molecular orbitals. The possibilities offered by the methodology are illustrated by investigating vertical excitation energies and oscillator strengths for ground-state to excited-state transitions in the Group 12 atoms and in heavy-element hydrides. The accuracy of the method is assessed by comparing the excitation energies obtained with earlier relativistic linear response TDDFT results and available experimental data.
Beskrivelse
Accepted manuscript version. Published version at http://doi.org/10.1021/ct501078d.
Forlag
American Chemical Society
Sitering
Journal of Chemical Theory and Computation 2015, 11(3):980-991
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (kjemi) [565]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring