Vis enkel innførsel

dc.contributor.authorJohnsen, Trygve
dc.contributor.authorShiromoto, Keisuke
dc.contributor.authorVerdure, Hugues
dc.date.accessioned2016-03-21T09:42:05Z
dc.date.available2016-03-21T09:42:05Z
dc.date.issued2015-10-01
dc.description.abstractWe give a generalization of Kung’s theorem on critical exponents of linear codes over a finite field, in terms of sums of extended weight polynomials of linear codes. For all i=k+1,…,ni=k+1,…,n, we give an upper bound on the smallest integer m such that there exist m codewords whose union of supports has cardinality at least i.en_US
dc.descriptionAccepted manuscript version. The final publication is available at Springer via <a href=http://doi.org/10.1007/s10623-015-0139-6>http://doi.org/10.1007/s10623-015-0139-6</a>.en_US
dc.identifier.citationDesigns, Codes and Cryptography 2015en_US
dc.identifier.cristinIDFRIDAID 1306329
dc.identifier.doi10.1007/s10623-015-0139-6
dc.identifier.issn1573-7586
dc.identifier.urihttps://hdl.handle.net/10037/9044
dc.identifier.urnURN:NBN:no-uit_munin_8617
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rights.accessRightsopenAccess
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.subjectLinear codeen_US
dc.subjectKung’s bounden_US
dc.subjectGeneralized Singleton bounden_US
dc.titleA generalization of Kung’s theoremen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel