Vis enkel innførsel

dc.contributor.advisorKruglikov, Boris
dc.contributor.authorWinther, Henrik
dc.date.accessioned2017-04-04T14:09:57Z
dc.date.available2017-04-04T14:09:57Z
dc.date.issued2017-02-24
dc.description.abstractWe facilitate the exploration and development of geometry by symmetry-based methods. To this end, we answer several natural questions that appear when considering symmetries, for particular examples of geometriesen_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractMany geometric structures have symmetries. For example, a hexagon can be rotated by multiples of 60 degrees or flipped about an axis, while a circle can be rotated by any number of degrees without changing it. The fundamental difference between these examples is that the hexagon has only finitely many symmetries, while the circle has a continuous set. The latter kind of symmetries are called Lie groups. We exploit the presence of such symmetries to explore and answer questions about more complicated geometries.en_US
dc.descriptionThe papers 3, 4, 5, and 6 are not available in Munin. <br> Paper 3: Kruglikov, B., Winther, H., Zalabová, L.: “Submaximally Symmetric Almost Quaternionic Structures”. (Manuscript). <br> Paper 4: Chrysikos, I., Gustad, C. O. C., Winther, H.: “Invariant connections and r-Einstein structures on isotropy irreducible spaces”. (Manuscript). <br> Paper 5: Kruglikov, B., Winther, H.: “Reconstruction from Representations: Jacobi via Cohomology”. (Manuscript). <br> Paper 6: Kruglikov, B., Winther, H.: “Nondegenerate para-complex structures in 6D with large symmetry”. (Manuscript).en_US
dc.identifier.isbn978-82-8236-246-7 (trykt) og 978-82-8236-247-4 (pdf)
dc.identifier.urihttps://hdl.handle.net/10037/10922
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2017 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Topology/geometry: 415en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Topologi/geometri: 415en_US
dc.titleLie-Algebraic Approaches to Highly Symmetric Geometriesen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)