ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ranking Using Transition Probabilities Learned from Multi-Attribute Data

Permanent link
https://hdl.handle.net/10037/15180
DOI
https://doi.org/10.1109/ICASSP.2018.8462132
Thumbnail
View/Open
article.pdf (892.6Kb)
Accepted manuscript version (PDF)
Date
2018-09-13
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Løkse, Sigurd; Jenssen, Robert
Abstract
In this paper, as a novel approach, we learn Markov chain transition probabilities for ranking of multi-attribute data from the inherent structures in the data itself. The procedure is inspired by consensus clustering and exploits a suitable form of the PageRank algorithm. This is very much in the spirit of the original PageRank utilizing the hyperlink structure to learn such probabilities. As opposed to existing approaches for ranking multi-attribute data, our method is not dependent on tuning of critical user-specified parameters. Experiments show the benefits of the proposed method.
Description
Accepted manuscript. Published version available at https://doi.org/10.1109/ICASSP.2018.8462132. ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Løkse, S. & Jenssen, R. (2018). Ranking Using Transition Probabilities Learned from Multi-Attribute Data. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 15. - 20. April 2018, p. 2851-2855. https://doi.org/10.1109/ICASSP.2018.8462132
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)