ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ranking Using Transition Probabilities Learned from Multi-Attribute Data

Permanent lenke
https://hdl.handle.net/10037/15180
DOI
https://doi.org/10.1109/ICASSP.2018.8462132
Thumbnail
Åpne
article.pdf (892.6Kb)
Accepted manuscript version (PDF)
Dato
2018-09-13
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Løkse, Sigurd; Jenssen, Robert
Sammendrag
In this paper, as a novel approach, we learn Markov chain transition probabilities for ranking of multi-attribute data from the inherent structures in the data itself. The procedure is inspired by consensus clustering and exploits a suitable form of the PageRank algorithm. This is very much in the spirit of the original PageRank utilizing the hyperlink structure to learn such probabilities. As opposed to existing approaches for ranking multi-attribute data, our method is not dependent on tuning of critical user-specified parameters. Experiments show the benefits of the proposed method.
Beskrivelse
Accepted manuscript. Published version available at https://doi.org/10.1109/ICASSP.2018.8462132. ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Forlag
Institute of Electrical and Electronics Engineers (IEEE)
Sitering
Løkse, S. & Jenssen, R. (2018). Ranking Using Transition Probabilities Learned from Multi-Attribute Data. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 15. - 20. April 2018, p. 2851-2855. https://doi.org/10.1109/ICASSP.2018.8462132
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring