Vis enkel innførsel

dc.contributor.authorBianchi, Filippo Maria
dc.contributor.authorLivi, Lorenzo
dc.contributor.authorFerrante, Alberto
dc.contributor.authorMilosevic, Jelena
dc.contributor.authorMiroslaw, Malek
dc.date.accessioned2019-10-21T13:38:11Z
dc.date.available2019-10-21T13:38:11Z
dc.date.issued2018
dc.description.abstractWe tackle the problem of classifying Electrocardiography (ECG) signals with the aim of predicting the onset of Paroxysmal Atrial Fibrillation (PAF). Atrial fibrillation is the most common type of arrhythmia, but in many cases PAF episodes are asymptomatic. Therefore, in order to help diagnosing PAF, it is important to design procedures for detecting and, more importantly, predicting PAF episodes. We propose a method for predicting PAF events whose first step consists of a feature extraction procedure that represents each ECG as a multi-variate time series. Successively, we design a classification framework based on kernel similarities for multi-variate time series, capable of handling missing data. We consider different approaches to perform classification in the original space of the multivariate time series and in an embedding space, defined by the kernel similarity measure. We achieve a classification accuracy comparable with state of the art methods, with the additional advantage of detecting the PAF onset up to 15 minutes in advance.en_US
dc.descriptionSource at <a href=https://doi.org/10.1109/IJCNN.2018.8489716>https://doi.org/10.1109/IJCNN.2018.8489716</a>.en_US
dc.identifier.citationBianchi, F.M., Livi, L., Ferrante, A., Milosevic, J. & Malek, M. (2018). Time Series Kernel Similarities for Predicting Paroxysmal Atrial Fibrillation from ECGs. <i>Proceedings of the 2018 International Joint Conference on Neural Networks</i>. https://doi.org/10.1109/IJCNN.2018.8489716en_US
dc.identifier.cristinIDFRIDAID 1658324
dc.identifier.issn2161-4393
dc.identifier.issn2161-4407
dc.identifier.urihttps://hdl.handle.net/10037/16443
dc.language.isoengen_US
dc.relation.journalProceedings of ... International Joint Conference on Neural Networks
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/IKTPLUSS/239844/Norway/Next Generation Kernel-Based Machine Learning for Big Missing Data Applied to Earth Observation//en_US
dc.rights.accessRightsopenAccessen_US
dc.titleTime Series Kernel Similarities for Predicting Paroxysmal Atrial Fibrillation from ECGsen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel